Plan 9 on 64-bit RISC-V {

Geoff Collyer
geoff@collyer.net

ABSTRACT

We have ported Plan 9 to several RISC-V ‘Unix-capable’
(RV64GCSU) implementations: the Microchip™ Polarfire Icicle™,
the tinyemu emulator, a pre-release Beagle V, the new StarFive
VisionFive 2, and the SiFive™ HiFive Unmatched™. The Beagle V
and Unmatched ports are currently usable, if you can find the
hardware, but consume more power than necessary when idle.
The only plausible supported hardware is currently the Icicle and
the VisionFive 2, but other systems are easily added.

This paper describes the porting process and makes recom-
mendations. Some of this work is still in progress, as of 7 August
2024.

1. Position Statement

The RISC-V architecture is elegant; I don’t have any serious criticism of it,
including at least the standard IMAFD extensions for Unix-capable systems.
(These are base Integer instructions, Multiplication and division, Atomic
memory operations, and single- and double-precision floating point. IMAFD is
also written as ‘G’. ‘C’ indicates ability to execute the compressed instructions.)
However, proposed and approved extensions beyond IMAFD, and other addi-
tions, are often flawed or downright rubbish.

People admire complexity.
— Rob Pike

Beauty is more important in computing than anywhere else in technology
because software is so complicated. Beauty is the ultimate defence against
complexity.

— David Gelernter

Much of this is hardware and software adopted unthinkingly from PCs and
ARM devices, regardless of technical merit, probably to re-use existing designs
and IP and Linux code. Several large corporations (e.g., Intel, Alibaba) seem

t This is a modified version of this paper [Col2023]

-2-

unable to comprehend the ‘R” in ‘RISC’ (i.e., keep it simple, stupid), but visible
complexity is not actually required for good performance, even if that’s easier for
the hardware designers. Unnecessary visible complexity is a failure of design. 1 don’t
really expect a company with an instruction set with over 800 instructions (over
2,000 by some reckoning), hundreds of MSRs, and a 2,680-page Ethernet con-
troller manual to understand this. We’ll revisit this in Recommendations and
Observations.

1.1. Demented Standards

How do you tell a bad standard? If it begins with “I"’, e.g, 120, IPMI. If it
ends with “'I"’, e.g., ACPI, EFI, IPMI, etc. If it has the word "intelligent’” in
it, e.g., 120, IPMI. Or, the best, if it has all three, e.g., IPML

— Ron Minnich

‘Device trees’, ACPI, (U)EFI and GUIDs are problems, not solutions, and we
try to avoid them at all costs. (Why use meaningful names when you can use
long, meaningless strings of hex digits?) The RISC-V Platform Specification sub-
committee is just flat-out wrong to adopt virtually every mistake ever made on
the IBM PC or ARM. The RISC-V Platform Specification is disappointing; RISC-
V presented an opportunity to rethink and replace this string of disasters, most
of which provide very little benefit.

1.2. Wretched Hardware

Throw out the hardware, let’s do it right.
— Steely Dan, Aja

Life is too short to deal with SD and MMC cards, GPIOs, PHYs, I12C, SPI and
other single-bit interfaces to guaranteed-model-specific hardware, and this crud
shouldn’t be necessary; hardware should be usable immediately after coming out
of reset. If the BIOS or U-boot initialize devices sufficiently to use them, that’s
good enough.

2. Background

In July 2020, the Microchip Polarfire Icicle board [Mic] was due to be the
tirst available RISC-V [Pat2017, Int] system that looked capable of running a
Unix-like operating system, including paging hardware, a gigabyte of RAM
(which turns out to be actually 2GB in 2 banks), and gigabit Ethernet, [Xil] with
multiple CPUs (also called cores and RISC-V harts) capable of 64-bit and (in
theory) 32-bit operation. It has one SiFive E51 RV64IMA core that lacks supervi-
sor mode (a ‘hobbled” hart) and starts the other four, which are SiFive Ub54
RV64GC cores at 600 MHz. The board contains no graphics hardware. We
assume conformity to a minimum Privileged ISA Specification of 1.10.

Richard Miller had a 32-bit RISC-V Plan 9 [Pik1990] C compiler suite
[Mil2020] already, and was willing to create a 64-bit compiler suite. Without
this, I would not have started this porting effort.

-3-

I originally planned to port the Plan 9 9k kernel, which already ran on 64-bit
amd64 systems and could exploit a large address space, to RV32GC mode on
the Icicle while Richard worked on the RV64 C compiler, then use the RV32GC
port as a basis for an RV64GC port when the RV64 compiler was ready. 9k
implements the same system calls and a subset of the devices that 9 implements.
The major device drivers are now identical in my 9 and 9k.

2.1. Timeline

The hardware was due to arrive in mid-September 2020, which eventually
slipped to mid-October. In the meantime, we developed using the tinyemu emu-
lator, which emulates both RV32 and RV64 architectures on any processor archi-
tecture, though only a single emulated processor. Tinyemu supplies no SBI and
starts the kernel in machine mode; all the other implementations have an SBI and
start the kernel in supervisor mode (except the RVB-ICE, which appears to start
it in machine mode). Richard ported it to Plan 9 and added a serial port and
virtio Ethernet. I made small changes to it to improve debugging capabilities and
it has proven helpful in finding bugs where the hardware’s response has been to
just sit there dumbly. Perhaps the SBI could accept requests on a UART to dump
a hart’s registers.

When the hardware arrived, we had a 9k kernel running on tinyemu, but we
then discovered some things that would require changes. Tinyemu starts our
kernel in RISC-V ‘machine’ mode, in which paging is disabled, but all machine
facilities may be configured. The lack of paging encourages starting RAM at
0x80000000 or higher, to match Unix kernel conventions. By early
December, we had a 64-bit kernel running on one CPU of the Icicle board using
39-bit virtual addresses ('Sv39’). By late December, all U54 CPUs were schedul-
ing processes. A few C compiler fixes arrived through mid-January. After that,
various mysterious misbehaviour disappeared. By early February, graceful
reboot was working and by mid-February, paging with 48-bit virtual addresses
('Sv48’) was working. The system seems to be complete and solid enough to use
as a CPU server, and should be relatively easy to adapt to future RV64G systems.

Since then, we have made minor fixes, code and performance improve-
ments, and adapted to various RISC-V systems, including improving SoC
(system-on-chip) configurability. In particular, self-checking code has been
added to verify sanity in various conditions, and to attempt to tolerate the unex-
pected.

2.2. Hardware and Firmware

A note on terminology: the CLINT is the per-CPU simple interrupt con-
troller; the PLIC is the system-wide more-complex interrupt controller. The
PLIC feeds into the CLINTSs as the external interrupt signal. The SBI[Int2022] is a
sort of BIOS, but unlike a PC BIOS, it cannot be circumvented.

On the hardware, the boot ROM/flash starts (typically) OpenSBI which
then starts U-boot, which starts our kernel in ‘supervisor’ mode, from which
there is no escape, with additional undocumented restrictions:

-4 -

e read-only (or no) access to the CLINT’s timer registers;
e have to use SBI calls to set the CLINT timer (and maybe send and clear IPIs);

e SBIv0.2 HSM (hart state management) calls are not implemented in the pro-
vided Icicle OpenSBI;

e U-boot on the Icicle only starts all CPUs (harts in RISC-V terminology) if one
uses the bootm command with an FDT to run a ulmage claiming to be a
Linux kernel.

A result is that we can’t switch the Icicle into RV32GC mode with the stock
boot 'ROM’, though it is possible in machine mode. So we abandoned the 32-bit
port since it can’t run on the available hardware, though it still ran in tinyemu, as
the current wave of Unix-capable systems are all RV64GC, as will be any Unix-
capable systems with more than 2GB of RAM.

There are conflicting accounts of the details of how RISC-V harts are started,

particularly at what PC. U-boot on Icicle starts them all at once at the entry point
in the ulmage file, while the other systems’ U-boot starts only hart 1.

2.2.1. Polarfire Icicle
There are other bits of ill-documented hardware:

e there’s an L2 cache which adheres to RISC-V cache coherence principles, so
can be largely ignored;

e the PLIC context ids apparently have consecutive values starting at 0: E51
hart 0 M (machine) mode, U54 hart 1 M, hart 1 S (supervisor) mode, hart 2 M,
hart 2 S, hart 3 M, hart 3 S, hart 4 M, and hart 4 S. These should be predict-

able or discoverable without consulting a ‘device tree’.

2.2.2. SiFive U740

On SiFive-U740-based systems, use of the WFI instruction, instead of
PAUSE, to save power when idling produces strange and varied behaviour:
console serial output gets stuck, or time gradually stops advancing, or the system
becomes very busy, possibly servicing interrupts. Without the Unmatched
hardware reference manual, it’s difficult to understand what is going wrong.

2.2.2.1. Beagle V

The now-cancelled Beagle V has 8 GB of RAM, and an L2 cache that is not
coherent with DMA, thus requiring manual cache flushing, unlike the other sys-
tems. (This was claimed to be a bug that would be fixed in production
hardware, the JH7110 SoC.) It also has a newer OpenSBI implementation that
provides the HSM operations.

2.2.2.2. HiFive Unmatched

OpenSBI's sbi_get_hart_status appears to often report the wrong hart as the
sole started hart.

2.2.2.3. StarFive™ VisionFive™ 2

The newly-arrived successor to the Beagle V, incorporating the JH7110 SoC,
is running. The Synopsys™ DWMAC is version 5.20, which is newer than the
Beagle V’s version 3.7, and incompatible. Many clock signals had to be enabled
and components taken out of reset via CRGs (system control registers) in order
to communicate with the DWMAC at all.

2.2.3. XuanTie™/T-Head RVB-ICE

This uses the XuanTie C910 CPU, which is claimed to be quite fast. After
enabling paging, something goes off the rails. Linux runs on this hardware, so
presumably there’s some extremely obscure magic needed, despite T-Head'’s
claim of RISC-V compatibility. English documentation not generated by Google
Translate is now available, but there seems to be no hope of getting this machine
to run Plan 9. Given the bugs in the C910, [Tho2024] this may be no great loss.

2.3. RISC-V Peculiarities

Memory alignment requirements are stricter than most people are used to:
natural alignment for scalars up to and including vlongt. Otherwise, we get
alignment exceptions. The 64-bit compiler promotes most scalars to 1ong when
pushing them as function arguments, only vlongs, doubles, pointers, and
some structs are wider. However, there can be gaps on the stack, e.g., when
pushing an int then a pointer.

Except on the Beagle V, all CPUs, memory caches and DMA accesses are
coherent, which is a delight. The RISC-V specifications encourage this, but it is
nevertheless unusual, surprising and noteworthy for RISC designs.

3. Plan 9 Changes
These are largely confined to the architecture-dependent source directories.

3.1. Removed Assumption of Memory at Address Zero

The original 9k assumed that RAM started at physical address 0, and it took
some trial-and-error to find and repair the myriad dependencies, notably in ini-
tial memory discovery and allocation.

3.2. No Virtual Page Table

The technique of the ‘virtual page table’” [MIT] (VPT), which injects the page
table into itself as a top-level PTE, is used in the 386 and amd64 ports, but
appears to be inapplicable to RISC-V. Lifting a level 1 PTE into the root (level 2)
PTE would vastly increase the address space that it covers, since size is implied
by level. So some page table updates had to be made explicit and do their own
allocations, which is clearer anyway (the existing VPT code is obscure).

1t OnPlan 9, vlong is long long, which is always 64 bits.

-6-

3.3. Variable Page Sizes and Page Table Levels

The system implements Sv39, Sv48, Sv57, and Sv64 paging, where available.
The supported hardware implements only Sv39 in RV64, but tinyemu imple-
ments Sv48 too. Sv57 and Sv64 are untested to date, but are straight-forward
extensions from Sv48.

3.4. SoC Configuration

Configuration for a new SoC requires editing the conf sections of kernel
configuration files, which now include descriptions, in C, of the SoC’s devices,
and fundamental addresses needed early or in mkfile are specified in the
/sys/src/9k/rv directory, in the file arch/defs, where arch is a short
name for the subarchitecture (e.g., te for tinyemu). The appendix contains an
example of the 64-bit tinyemu configuration. See tecpu and pfcpu for com-
plete examples.

3.5. Starting CPUs During Bootstrap

On x86 systems, a single CPU starts at bootstrap, and it then starts the oth-
ers. RISC-V systems may start CPUs (harts) at any time. The Icicle starts them all
at once when U-boot’s bootm command starts the kernel, which is necessary
because its SBI lacks the HSM commands that would otherwise be needed. The
other systems start a single CPU (or at least try to), which uses the SBI HSM calls
to start the others. The start-up code now copes with those possibilities, and the
situation of having just been restarted via /dev/reboot.

3.6. A ClIdiom
In a C expression such as in the following, using Plan 9 types:

uvlong uvl, va;

uvl &= ~((1<<5) - 1); /* zero low 5 bits */
uvl = va & ~((1U<<12) - 1);/* get pure page number *

the result will probably not be what was intended. The ~ operator will have an
int or uint operand, yielding a result of the same type, 32 bits wide. This
result will be widened for the & or &= operator, but it may be zero-extended,
thus ensuring that the result in uvl will have zeroes in its upper 32 bits. In par-
ticular, 64-bit physical addresses of RAM on RISC-V were being truncated. 6c
and now jc detect this inadvertent zero-extension in the uint case.

Ensuring that the operand (and thus result type) of ~ is vlong or
uvlong avoids this problem. We have made this change throughout 9k.

4. Performance

These are times to build the Plan 9 rv kernel from scratch mostly on
RV64GC systems with 1Gb/s Ethernet using the same 10Gb/s Ethernet file
server, except as noted. These were all effectively diskless, as is normal for Plan
9 systems. To load caches before measuring, these commands were executed:

mk clean; mk; mk clean; time mk >/dev/null

and yielded these results:

user Sys real C Iss. GHz description
1.07u 1.73s 2.04r 4 77 3.8 amd64 Xeon, 10GbE
1.96u 1.67s 2.58r 4 6.27 3.1 386 nuc5i7 ¢t
7.25u 4.58s 6.28r 4 2 1.25 visionfive 2 (wfi ipis 0 ns.)
7.43u 4.30s 6.84r 4 2 1.25 visionfive 2 (wfi ipis >292s.)
6.65u 3.75s 7.66r 4 2 1.25 visionfive 2 (wfi, no ipis)
3.43u 4.15s 7.24r 4 ~6.8 1.5 arm raspberry pi 4 HZ=200 ft
10.91u 7.79s 11.46r 4 2 1.2 hifive unmatched
14.60u 7.09s 14.47r 4 1 0.6 Icicle, no ipis
10.14u 13.63s 19.10r 2 2 1 arm cortex—a7 trimslice ¢t
14.99u 9.11s 50.91r 2 2 1 pre—-release beagle v *
38.52u 20.44s 64.98r 1 1.5 0.68 mips 24k routerboard, no fp %
144.87u 47.99s 242 .52r 1 77 3.5 tinyemu on 386 Xeon HZ=200 %

C is the number of cores, Iss. is the number of instructions issued per cycle, GHz
is the CPU speed in gigahertz.

See this earlier paper [Col2010] for comparison with older Plan 9 systems of
various architectures.

5. Recommendations and Observations

Microchip’s documentation seems to be unclear if it’s intended for someone
repackaging the hardware or for the ultimate end user. It often specifies that
some value is programmable but doesn’t provide the choice of value used in the
Icicle. It would be helpful to have end user documentation.

The RISC-V architecture tries to leave some things unspecified to allow
implementations some leeway, requiring that platform documentation provide
the actual values implemented, but the platform makers don’t always do so.
Concern for RISC-V implementors should be balanced with concern for users;
vagueness is rarely useful to system programmers. It would be more helpful to
be able to query such values programmatically without consulting a ‘device
tree’.

All the timers provided require a priori knowledge of their frequencies. To
let software determine the actual frequencies, it would be very helpful to have a
real-time clock that ticks at a known, fixed rate (e.g., 100 times per second) or a
register containing the (fixed) CLINT timer frequency. As it stands, the frequen-
cies have to be supplied to software.

* using a different, 1Gb/s file server
T 32-bit Plan 9

-8-

Detecting and reporting infinitely-recursive traps (perhaps in SBI) would be
quite helpful during development, for example, if the STVEC CSR (Control and
Status Register) contains a no-longer valid virtual address. We have modified
tinyemu to do this.

Requiring all RISC-V systems (or at least Unix-capable ones) to have an
8250-compatible console UART at a common, fixed physical address and a com-
mon frequency would help with porting. SiFive has its own non-8250-
compatible UART.

Micro-USB connectors need to be braced very firmly; a slight tug on an
attached cable should not yank the connector off the board. The Unmatched
board is quite flimsy. Its SD card slot isn’t much better.

The Icicle’s power cable is fragile and prone to interrupting power when
tlexed.

Suppliers need to implement both PXE booting and the saveenv com-
mand in their U-boot variants from the very start. These are important capabili-
ties for kernel developers and must not be pushed off into the future. The Icicle
at least has working PXE booting on one Ethernet, but no saveenv command,
so automatic booting of Plan 9 kernels at reset won’t work. The otherwise-
promising Sipeed Nezha board’s U-boot lacks PXE booting entirely, which makes
it too much of a hassle to be worthwhile.

5.1. Assessment of RISC-V

In general, RISC-V seems to be a pleasant architecture with a few minor
infelicities. (Implementing graceful reboot on the Icicle was a challenge.) Some
additions and extensions add the sort of unnecessary and clumsy complexity
that has made X86 the dog’s breakfast that it is (e.g., the XuanTie C910). The
XuanTie processors seem to have reintroduced all the mistakes that ARM made
and that RISC-V carefully omitted. SBI is another story altogether.

The CSRR* instructions hard-code the CSR number; they would be easier
to invoke from C if the CSR number were held in rs2 instead, thus allowing use
of less assembly language while avoiding executing code generated on-the-fly.

If the kernel’s stack pointer contains an invalid address (e.g., a change in
page tables makes it invalid), the trap to report the invalid address will trap end-
lessly due to an invalid stack pointer. SBI could perhaps note and report this.

A register that returns the PLIC context for machine mode on the current
CPU would ease PLIC use without requiring external assistance.

It would be useful in a few cases to be able to determine the nominal
privilege mode, even if it’s virtualized. Being able to probe for a given CSR
without causing a trap would help too.

Machine mode seems dubious. Supervisor mode should be able to control
the (possibly virtual) machine, and a mode without the possibility of paging is
not helpful. Running Plan 9 or a UNIX kernel in machine mode with reasonable
efficiency is infeasible; the kernel needs to use virtual memory. When running
on tinyemu, we initially configure some M-mode-only facilities, delegate any

-9-

possible M-mode traps and interrupts to S-mode, and switch to S-mode.
Thereafter, we catch and forward M-mode traps to S-mode.

The focus on undetectable virtualization seems excessive. Being able to pro-
grammatically at least confirm various attributes of the environment in machine
and supervisor modes would be helpful.

PMP (Physical Memory Protection) is probably unnecessary on systems
with MMUs, and is a bit of a pain to configure.

5.1.1. SBI

SBI seems largely unnecessary yet it insists on disabling some hardware
features that a kernel could use directly and requiring use of SBI instead. I don’t
want or need another layer of software between the hardware and my kernel.
The SBI specification is imprecise. For example, what are the units of the timer
functions? Which timer do they set? What is that timer’s frequency? Is the
timer global or per-hart? Under what conditions can sbi_send_ipi (FID 0, EID 4)
fail? It has been seen to fail with valid hart ids on OpenSBI. Which supervisor-
mode facilities has it disabled?

There is some evidence of bugs in OpenSBI calls, e.g., sbi_get_hart_status.

6. Future Work

Bootstrapping is clumsy; a future upgrade to the Icicle’s U-boot should yield
an automatic way to PXE boot at power-on or reset. (Until then, fshalt(8) pro-
vides graceful reboots.)

There is Icicle and Unmatched hardware that we do not (yet) drive: an open
PCI-E slot, an FPGA on the Icicle, and USB controller(s). Icicle documentation
for USB is not obviously locatable. Icicle PCI-E requires newer HSS (hart
software services) firmware.

7. Availability

A reasonably-stable distribution of the RISC-V kernel and the compiler used
to build it, along with support files, is maintained in

https://9p.io/sources/contrib/geoff/riscv/dist.9%—-rv.tgz.

8. Acknowledgements

Richard Miller developed the 32-bit and 64-bit RISC-V C compiler suites for
Plan 9. He has been very helpful, fixing (minor) bugs, helping to find my
obscure bugs, contributing sdio/mmc drivers, and extending the assemblers. The
late Jim McKie created the 64-bit 9k kernel and Charles Forsyth created the
amd 64 compiler suite for the first architecture. We are building, of course, on
years of work at Bell Labs creating and developing Plan 9.

-10 -

References

Co12010. Geoff Collyer, “Recent Plan 9 Work at Bell Labs,” Fifth International
Workshop on Plan 9, Seattle, invited talk, http://-
www.collyer.net/who/geoff/ports.pdf(October 2010).

Co12023. Geoff Collyer, “Plan 9 on 64-bit RISC-V,” Ninth International Workshop
on Plan 9, Waterloo (21 April 2023).

Int2022. RISC-V International, RISC-V Supervisor Binary Interface Specification,
https://github.com/riscv/riscv—-sbi-doc/blob/-
master/riscv-sbi.adoc, 2022.

Int. RISC-V International, RISC-V home, http://riscv.org.

Mic. Microsemi, Icicle, https://www.microsemi.com/-
products/fpga—-soc.

Mil2020. Richard Miller, A Plan 9 C Compiler for RISC-V RV32GC and RV64GC,
https://ossg.bcs.org/wp—
content/uploads/criscv64.pdf 19 Oct 2020.

MIT. MIT, Address translation — and sharing using page tables,
https://pdos.csail.mit.edu/6.828/2007/1lec/15.htmlL

Pat2017. David Patterson, Andrew Waterman, The RISC-V Reader, Strawberry
Canyon (7 November 2017). http://riscvbook.com

Pik1990. Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, “Plan 9
from Bell Labs,” Proc. of the Summer 1990 UKUUG Conf., London, pp.1-9
(July, 1990).

Tho2024. Fabian Thomas, Lorenz Hetterich et al., RISCVuzz: Discovering Archi-
tectural ~ CPU Vulnerabilities via Differential ~ Hardware Fuzzing,
https://ghostwriteattack.com/riscvuzz.pdf 7
August 2024.

Xil. Xilinx, Zyng 7000 SoC Technical — Reference ~ Manual (UG585),
https://www.xilinx.com/support/documentation/-
user_guides/ug585-Zyng—7000—TRM. pdf.

-11 -

Appendix

/* 64-bit tinyemu configuration from tecpu kernel config */
#include "riscv64.h"

int cpuserver 1;
int idlepause 1;
uvlong cpuhz = 156*1000*1000; /* from timesync, emulated on 3ghz nuc */
uvlong timebase = 10%*1000%1000; /* clint ticks per second */
Membank membanks[] = { /* (address, size) pairs */
PHYSMEM, BANKOSIZE,
0

}s

char defnvram[] = "/boot/nvram";
uintptr uartregs[] = { PAUartO };
int nuart = nelem(uartregs);
vliong uartfreq = 384000;

uchar etherOmac[] = { 2, 0, 0, O, O, 1 %};

/* the emulated plic doesn’t seem to follow the spec; we ignore it. */
Soc soc = {

.clint = (char *)PAClint,

.uart = (char *)PAUartO,

.plic = (char *)0x40100000,

.ether[0] = (char *)0x40011000,

.hobbled= 0, /* only 1 hart */
}s
TIoconf socconf[] = { /* devices without drivers that vmap their regs */
{ "clint", 64*KB, &soc.clint, 1},
{ "uwart", PGSZ, &soc.uart, 1, I},
{ "plic", 4*MB, &soc.plic, }, /* common but smaller */
0
}s

Ioconf ioconfs[] = { /* devices whose drivers vmap their regs */
{ "ether", 2*PGSZ, &soc.ether[0], 2, },
0

};

-11 -

