
Plan 9 on 64bit RISCV

Geoff Collyer
geoff@collyer.net

ABSTRACT

We have ported Plan 9 to several RISCV ‘Unixcapable’
(RV64GCSU) implementations: the Microchip" Polarfire Icicle",
the tinyemu emulator, a prerelease Beagle V, the new StarFive
VisionFive 2, and the SiFive" HiFive Unmatched". The Beagle V
and Unmatched ports are currently usable, if you can find the
hardware, but consume more power than necessary when idle.
The only plausible supported hardware is currently the Icicle and
the VisionFive 2, but other systems are easily added.

This paper describes the porting process and makes recom
mendations. Some of this work is still in progress, as of 7 August
2024.

1. Position Statement

The RISCV architecture is elegant; I don’t have any serious criticism of it,
including at least the standard IMAFD extensions for Unixcapable systems.
(These are base Integer instructions, Multiplication and division, Atomic
memory operations, and single and doubleprecision floating point. IMAFD is
also written as ‘G’. ‘C’ indicates ability to execute the compressed instructions.)
However, proposed and approved extensions beyond IMAFD, and other addi
tions, are often flawed or downright rubbish.

People admire complexity.

� Rob Pike

Beauty is more important in computing than anywhere else in technology
because software is so complicated. Beauty is the ultimate defence against
complexity.

� David Gelernter

Much of this is hardware and software adopted unthinkingly from PCs and
ARM devices, regardless of technical merit, probably to reuse existing designs
and IP and Linux code. Several large corporations (e.g., Intel, Alibaba) seem

 This is a modified version of this paper [Col2023]

 2

unable to comprehend the ‘R’ in ‘RISC’ (i.e., keep it simple, stupid), but visible
complexity is not actually required for good performance, even if that’s easier for
the hardware designers. Unnecessary visible complexity is a failure of design. I don’t
really expect a company with an instruction set with over 800 instructions (over
2,000 by some reckoning), hundreds of MSRs, and a 2,680page Ethernet con
troller manual to understand this. We’ll revisit this in Recommendations and
Observations.

1.1. Demented Standards

How do you tell a bad standard? If it begins with ‘‘I’’, e.g, I2O, IPMI. If it
ends with ‘‘I’’, e.g., ACPI, EFI, IPMI, etc. If it has the word ‘‘intelligent’’ in
it, e.g., I2O, IPMI. Or, the best, if it has all three, e.g., IPMI.

� Ron Minnich

‘Device trees’, ACPI, (U)EFI and GUIDs are problems, not solutions, and we
try to avoid them at all costs. (Why use meaningful names when you can use
long, meaningless strings of hex digits?) The RISCV Platform Specification sub
committee is just flatout wrong to adopt virtually every mistake ever made on
the IBM PC or ARM. The RISCV Platform Specification is disappointing; RISC
V presented an opportunity to rethink and replace this string of disasters, most
of which provide very little benefit.

1.2. Wretched Hardware

Throw out the hardware, let’s do it right.

� Steely Dan, Aja

Life is too short to deal with SD and MMC cards, GPIOs, PHYs, I2C, SPI and
other singlebit interfaces to guaranteedmodelspecific hardware, and this crud
shouldn’t be necessary; hardware should be usable immediately after coming out
of reset. If the BIOS or Uboot initialize devices sufficiently to use them, that’s
good enough.

2. Background

In July 2020, the Microchip Polarfire Icicle board [Mic] was due to be the
first available RISCV [Pat2017, Int] system that looked capable of running a
Unixlike operating system, including paging hardware, a gigabyte of RAM
(which turns out to be actually 2GB in 2 banks), and gigabit Ethernet, [Xil] with
multiple CPUs (also called cores and RISCV harts) capable of 64bit and (in
theory) 32bit operation. It has one SiFive E51 RV64IMA core that lacks supervi
sor mode (a ‘hobbled’ hart) and starts the other four, which are SiFive U54
RV64GC cores at 600 MHz. The board contains no graphics hardware. We
assume conformity to a minimum Privileged ISA Specification of 1.10.

Richard Miller had a 32bit RISCV Plan 9 [Pik1990] C compiler suite
[Mil2020] already, and was willing to create a 64bit compiler suite. Without
this, I would not have started this porting effort.

 3

I originally planned to port the Plan 9 9k kernel, which already ran on 64bit
amd64 systems and could exploit a large address space, to RV32GC mode on
the Icicle while Richard worked on the RV64 C compiler, then use the RV32GC
port as a basis for an RV64GC port when the RV64 compiler was ready. 9k
implements the same system calls and a subset of the devices that 9 implements.
The major device drivers are now identical in my 9 and 9k.

2.1. Timeline

The hardware was due to arrive in midSeptember 2020, which eventually
slipped to midOctober. In the meantime, we developed using the tinyemu emu
lator, which emulates both RV32 and RV64 architectures on any processor archi
tecture, though only a single emulated processor. Tinyemu supplies no SBI and
starts the kernel in machine mode; all the other implementations have an SBI and
start the kernel in supervisor mode (except the RVBICE, which appears to start
it in machine mode). Richard ported it to Plan 9 and added a serial port and
virtio Ethernet. I made small changes to it to improve debugging capabilities and
it has proven helpful in finding bugs where the hardware’s response has been to
just sit there dumbly. Perhaps the SBI could accept requests on a UART to dump
a hart’s registers.

When the hardware arrived, we had a 9k kernel running on tinyemu, but we
then discovered some things that would require changes. Tinyemu starts our
kernel in RISCV ‘machine’ mode, in which paging is disabled, but all machine
facilities may be configured. The lack of paging encourages starting RAM at
0x80000000 or higher, to match Unix kernel conventions. By early
December, we had a 64bit kernel running on one CPU of the Icicle board using
39bit virtual addresses (‘Sv39’). By late December, all U54 CPUs were schedul
ing processes. A few C compiler fixes arrived through midJanuary. After that,
various mysterious misbehaviour disappeared. By early February, graceful
reboot was working and by midFebruary, paging with 48bit virtual addresses
(‘Sv48’) was working. The system seems to be complete and solid enough to use
as a CPU server, and should be relatively easy to adapt to future RV64G systems.

Since then, we have made minor fixes, code and performance improve
ments, and adapted to various RISCV systems, including improving SoC
(systemonchip) configurability. In particular, selfchecking code has been
added to verify sanity in various conditions, and to attempt to tolerate the unex
pected.

2.2. Hardware and Firmware

A note on terminology: the CLINT is the perCPU simple interrupt con
troller; the PLIC is the systemwide morecomplex interrupt controller. The
PLIC feeds into the CLINTs as the external interrupt signal. The SBI[Int2022] is a
sort of BIOS, but unlike a PC BIOS, it cannot be circumvented.

On the hardware, the boot ROM/flash starts (typically) OpenSBI which
then starts Uboot, which starts our kernel in ‘supervisor’ mode, from which
there is no escape, with additional undocumented restrictions:

 4

� readonly (or no) access to the CLINT’s timer registers;

� have to use SBI calls to set the CLINT timer (and maybe send and clear IPIs);

� SBI v0.2 HSM (hart state management) calls are not implemented in the pro
vided Icicle OpenSBI;

� Uboot on the Icicle only starts all CPUs (harts in RISCV terminology) if one
uses the bootm command with an FDT to run a uImage claiming to be a
Linux kernel.

A result is that we can’t switch the Icicle into RV32GC mode with the stock
boot ‘ROM’, though it is possible in machine mode. So we abandoned the 32bit
port since it can’t run on the available hardware, though it still ran in tinyemu, as
the current wave of Unixcapable systems are all RV64GC, as will be any Unix
capable systems with more than 2GB of RAM.

There are conflicting accounts of the details of how RISCV harts are started,
particularly at what PC. Uboot on Icicle starts them all at once at the entry point
in the uImage file, while the other systems’ Uboot starts only hart 1.

2.2.1. Polarfire Icicle

There are other bits of illdocumented hardware:

� there’s an L2 cache which adheres to RISCV cache coherence principles, so
can be largely ignored;

� the PLIC context ids apparently have consecutive values starting at 0: E51
hart 0 M (machine) mode, U54 hart 1 M, hart 1 S (supervisor) mode, hart 2 M,
hart 2 S, hart 3 M, hart 3 S, hart 4 M, and hart 4 S. These should be predict
able or discoverable without consulting a ‘device tree’.

2.2.2. SiFive U740

On SiFiveU740based systems, use of the WFI instruction, instead of
PAUSE, to save power when idling produces strange and varied behaviour:
console serial output gets stuck, or time gradually stops advancing, or the system
becomes very busy, possibly servicing interrupts. Without the Unmatched
hardware reference manual, it’s difficult to understand what is going wrong.

2.2.2.1. Beagle V

The nowcancelled Beagle V has 8 GB of RAM, and an L2 cache that is not
coherent with DMA, thus requiring manual cache flushing, unlike the other sys
tems. (This was claimed to be a bug that would be fixed in production
hardware, the JH7110 SoC.) It also has a newer OpenSBI implementation that
provides the HSM operations.

2.2.2.2. HiFive Unmatched

OpenSBI’s sbi_get_hart_status appears to often report the wrong hart as the
sole started hart.

 5

2.2.2.3. StarFive" VisionFive" 2

The newlyarrived successor to the Beagle V, incorporating the JH7110 SoC,
is running. The Synopsys" DWMAC is version 5.20, which is newer than the
Beagle V’s version 3.7, and incompatible. Many clock signals had to be enabled
and components taken out of reset via CRGs (system control registers) in order
to communicate with the DWMAC at all.

2.2.3. XuanTie"/THead RVBICE

This uses the XuanTie C910 CPU, which is claimed to be quite fast. After
enabling paging, something goes off the rails. Linux runs on this hardware, so
presumably there’s some extremely obscure magic needed, despite THead’s
claim of RISCV compatibility. English documentation not generated by Google
Translate is now available, but there seems to be no hope of getting this machine
to run Plan 9. Given the bugs in the C910, [Tho2024] this may be no great loss.

2.3. RISCV Peculiarities

Memory alignment requirements are stricter than most people are used to:
natural alignment for scalars up to and including vlong . Otherwise, we get
alignment exceptions. The 64bit compiler promotes most scalars to longwhen
pushing them as function arguments, only vlongs, doubles, pointers, and
some structs are wider. However, there can be gaps on the stack, e.g., when
pushing an int then a pointer.

Except on the Beagle V, all CPUs, memory caches and DMA accesses are
coherent, which is a delight. The RISCV specifications encourage this, but it is
nevertheless unusual, surprising and noteworthy for RISC designs.

3. Plan 9 Changes

These are largely confined to the architecturedependent source directories.

3.1. Removed Assumption of Memory at Address Zero

The original 9k assumed that RAM started at physical address 0, and it took
some trialanderror to find and repair the myriad dependencies, notably in ini
tial memory discovery and allocation.

3.2. No Virtual Page Table

The technique of the ‘virtual page table’ [MIT] (VPT), which injects the page
table into itself as a toplevel PTE, is used in the 386 and amd64 ports, but
appears to be inapplicable to RISCV. Lifting a level 1 PTE into the root (level 2)
PTE would vastly increase the address space that it covers, since size is implied
by level. So some page table updates had to be made explicit and do their own
allocations, which is clearer anyway (the existing VPT code is obscure).

 On Plan 9, vlong is long long, which is always 64 bits.

 6

3.3. Variable Page Sizes and Page Table Levels

The system implements Sv39, Sv48, Sv57, and Sv64 paging, where available.
The supported hardware implements only Sv39 in RV64, but tinyemu imple
ments Sv48 too. Sv57 and Sv64 are untested to date, but are straightforward
extensions from Sv48.

3.4. SoC Configuration

Configuration for a new SoC requires editing the conf sections of kernel
configuration files, which now include descriptions, in C, of the SoC’s devices,
and fundamental addresses needed early or in mkfile are specified in the
/sys/src/9k/rv directory, in the file arch/defs, where arch is a short
name for the subarchitecture (e.g., te for tinyemu). The appendix contains an
example of the 64bit tinyemu configuration. See tecpu and pfcpu for com
plete examples.

3.5. Starting CPUs During Bootstrap

On x86 systems, a single CPU starts at bootstrap, and it then starts the oth
ers. RISCV systems may start CPUs (harts) at any time. The Icicle starts them all
at once when Uboot’s bootm command starts the kernel, which is necessary
because its SBI lacks the HSM commands that would otherwise be needed. The
other systems start a single CPU (or at least try to), which uses the SBI HSM calls
to start the others. The startup code now copes with those possibilities, and the
situation of having just been restarted via /dev/reboot.

3.6. A C Idiom

In a C expression such as in the following, using Plan 9 types:

uvlong uvl, va;

uvl &= ~((1<<5) - 1); /* zero low 5 bits */
uvl = va & ~((1U<<12) - 1);/* get pure page number */

the result will probably not be what was intended. The ~ operator will have an
int or uint operand, yielding a result of the same type, 32 bits wide. This
result will be widened for the & or &= operator, but it may be zeroextended,
thus ensuring that the result in uvl will have zeroes in its upper 32 bits. In par
ticular, 64bit physical addresses of RAM on RISCV were being truncated. 6c
and now jc detect this inadvertent zeroextension in the uint case.

Ensuring that the operand (and thus result type) of ~ is vlong or
uvlong avoids this problem. We have made this change throughout 9k.

 7

4. Performance

These are times to build the Plan 9 rv kernel from scratch mostly on
RV64GC systems with 1Gb/s Ethernet using the same 10Gb/s Ethernet file
server, except as noted. These were all effectively diskless, as is normal for Plan
9 systems. To load caches before measuring, these commands were executed:

mk clean; mk; mk clean; time mk >/dev/null

and yielded these results:

user sys real C Iss. GHz description__
1.07u 1.73s 2.04r 4 7? 3.8 amd64 Xeon, 10GbE
1.96u 1.67s 2.58r 4 6.2? 3.1 386 nuc5i7 __
7.25u 4.58s 6.28r 4 2 1.25 visionfive 2 (wfi ipis 0 ns.)
7.43u 4.30s 6.84r 4 2 1.25 visionfive 2 (wfi ipis >2µs.)
6.65u 3.75s 7.66r 4 2 1.25 visionfive 2 (wfi, no ipis)__
3.43u 4.15s 7.24r 4 ~6.8 1.5 arm raspberry pi 4 HZ=200

10.91u 7.79s 11.46r 4 2 1.2 hifive unmatched
14.60u 7.09s 14.47r 4 1 0.6 Icicle, no ipis__
10.14u 13.63s 19.10r 2 2 1 arm cortex-a7 trimslice

14.99u 9.11s 50.91r 2 2 1 pre-release beagle v *
38.52u 20.44s 64.98r 1 1.5 0.68 mips 24k routerboard, no fp __
144.87u 47.99s 242.52r 1 7? 3.5 tinyemu on 386 Xeon HZ=200

C is the number of cores, Iss. is the number of instructions issued per cycle, GHz
is the CPU speed in gigahertz.

See this earlier paper [Col2010] for comparison with older Plan 9 systems of
various architectures.

5. Recommendations and Observations

Microchip’s documentation seems to be unclear if it’s intended for someone
repackaging the hardware or for the ultimate end user. It often specifies that
some value is programmable but doesn’t provide the choice of value used in the
Icicle. It would be helpful to have end user documentation.

The RISCV architecture tries to leave some things unspecified to allow
implementations some leeway, requiring that platform documentation provide
the actual values implemented, but the platform makers don’t always do so.
Concern for RISCV implementors should be balanced with concern for users;
vagueness is rarely useful to system programmers. It would be more helpful to
be able to query such values programmatically without consulting a ‘device
tree’.

All the timers provided require a priori knowledge of their frequencies. To
let software determine the actual frequencies, it would be very helpful to have a
realtime clock that ticks at a known, fixed rate (e.g., 100 times per second) or a
register containing the (fixed) CLINT timer frequency. As it stands, the frequen
cies have to be supplied to software.

* using a different, 1Gb/s file server
 32bit Plan 9

 8

Detecting and reporting infinitelyrecursive traps (perhaps in SBI) would be
quite helpful during development, for example, if the STVEC CSR (Control and
Status Register) contains a nolonger valid virtual address. We have modified
tinyemu to do this.

Requiring all RISCV systems (or at least Unixcapable ones) to have an
8250compatible console UART at a common, fixed physical address and a com
mon frequency would help with porting. SiFive has its own non8250
compatible UART.

MicroUSB connectors need to be braced very firmly; a slight tug on an
attached cable should not yank the connector off the board. The Unmatched
board is quite flimsy. Its SD card slot isn’t much better.

The Icicle’s power cable is fragile and prone to interrupting power when
flexed.

Suppliers need to implement both PXE booting and the saveenv com
mand in their Uboot variants from the very start. These are important capabili
ties for kernel developers and must not be pushed off into the future. The Icicle
at least has working PXE booting on one Ethernet, but no saveenv command,
so automatic booting of Plan 9 kernels at reset won’t work. The otherwise
promising Sipeed Nezha board’s Uboot lacks PXE booting entirely, which makes
it too much of a hassle to be worthwhile.

5.1. Assessment of RISCV

In general, RISCV seems to be a pleasant architecture with a few minor
infelicities. (Implementing graceful reboot on the Icicle was a challenge.) Some
additions and extensions add the sort of unnecessary and clumsy complexity
that has made X86 the dog’s breakfast that it is (e.g., the XuanTie C910). The
XuanTie processors seem to have reintroduced all the mistakes that ARM made
and that RISCV carefully omitted. SBI is another story altogether.

The CSRR* instructions hardcode the CSR number; they would be easier
to invoke from C if the CSR number were held in rs2 instead, thus allowing use
of less assembly language while avoiding executing code generated onthefly.

If the kernel’s stack pointer contains an invalid address (e.g., a change in
page tables makes it invalid), the trap to report the invalid address will trap end
lessly due to an invalid stack pointer. SBI could perhaps note and report this.

A register that returns the PLIC context for machine mode on the current
CPU would ease PLIC use without requiring external assistance.

It would be useful in a few cases to be able to determine the nominal
privilege mode, even if it’s virtualized. Being able to probe for a given CSR
without causing a trap would help too.

Machine mode seems dubious. Supervisor mode should be able to control
the (possibly virtual) machine, and a mode without the possibility of paging is
not helpful. Running Plan 9 or a UNIX kernel in machine mode with reasonable
efficiency is infeasible; the kernel needs to use virtual memory. When running
on tinyemu, we initially configure some Mmodeonly facilities, delegate any

 9

possible Mmode traps and interrupts to Smode, and switch to Smode.
Thereafter, we catch and forward Mmode traps to Smode.

The focus on undetectable virtualization seems excessive. Being able to pro
grammatically at least confirm various attributes of the environment in machine
and supervisor modes would be helpful.

PMP (Physical Memory Protection) is probably unnecessary on systems
with MMUs, and is a bit of a pain to configure.

5.1.1. SBI

SBI seems largely unnecessary yet it insists on disabling some hardware
features that a kernel could use directly and requiring use of SBI instead. I don’t
want or need another layer of software between the hardware and my kernel.
The SBI specification is imprecise. For example, what are the units of the timer
functions? Which timer do they set? What is that timer’s frequency? Is the
timer global or perhart? Under what conditions can sbi_send_ipi (FID 0, EID 4)
fail? It has been seen to fail with valid hart ids on OpenSBI. Which supervisor
mode facilities has it disabled?

There is some evidence of bugs in OpenSBI calls, e.g., sbi_get_hart_status.

6. Future Work

Bootstrapping is clumsy; a future upgrade to the Icicle’s Uboot should yield
an automatic way to PXE boot at poweron or reset. (Until then, fshalt(8) pro
vides graceful reboots.)

There is Icicle and Unmatched hardware that we do not (yet) drive: an open
PCIE slot, an FPGA on the Icicle, and USB controller(s). Icicle documentation
for USB is not obviously locatable. Icicle PCIE requires newer HSS (hart
software services) firmware.

7. Availability

A reasonablystable distribution of the RISCV kernel and the compiler used
to build it, along with support files, is maintained in

https://9p.io/sources/contrib/geoff/riscv/dist.9k-rv.tgz.

8. Acknowledgements

Richard Miller developed the 32bit and 64bit RISCV C compiler suites for
Plan 9. He has been very helpful, fixing (minor) bugs, helping to find my
obscure bugs, contributing sdio/mmc drivers, and extending the assemblers. The
late Jim McKie created the 64bit 9k kernel and Charles Forsyth created the
amd64 compiler suite for the first architecture. We are building, of course, on
years of work at Bell Labs creating and developing Plan 9.

 10

References

Col2010. Geoff Collyer, ‘‘Recent Plan 9 Work at Bell Labs,’’ Fifth International
Workshop on Plan 9, Seattle, invited talk, http://
www.collyer.net/who/geoff/ports.pdf(October 2010).

Col2023. Geoff Collyer, ‘‘Plan 9 on 64bit RISCV,’’ Ninth International Workshop
on Plan 9, Waterloo (21 April 2023).

Int2022. RISCV International, RISCV Supervisor Binary Interface Specification,
https://github.com/riscv/riscv-sbi-doc/blob/
master/riscv-sbi.adoc, 2022.

Int. RISCV International, RISCV home, http://riscv.org.

Mic. Microsemi, Icicle, https://www.microsemi.com/
products/fpga-soc.

Mil2020. Richard Miller, A Plan 9 C Compiler for RISCV RV32GC and RV64GC,
https://ossg.bcs.org/wp-
content/uploads/criscv64.pdf, 19 Oct 2020.

MIT. MIT, Address translation and sharing using page tables,
https://pdos.csail.mit.edu/6.828/2007/lec/l5.html.

Pat2017. David Patterson, Andrew Waterman, The RISCV Reader, Strawberry
Canyon (7 November 2017). http://riscvbook.com

Pik1990. Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, ‘‘Plan 9
from Bell Labs,’’ Proc. of the Summer 1990 UKUUG Conf., London, pp. 19
(July, 1990).

Tho2024. Fabian Thomas, Lorenz Hetterich et al., RISCVuzz: Discovering Archi
tectural CPU Vulnerabilities via Differential Hardware Fuzzing,
https://ghostwriteattack.com/riscvuzz.pdf, 7
August 2024.

Xil. Xilinx, Zynq 7000 SoC Technical Reference Manual (UG585),
https://www.xilinx.com/support/documentation/

user_guides/ug585-Zynq-7000-TRM.pdf.

 11

Appendix

/* 64-bit tinyemu configuration from tecpu kernel config */
#include "riscv64.h"

int cpuserver = 1;
int idlepause = 1;
uvlong cpuhz = 156*1000*1000; /* from timesync, emulated on 3ghz nuc */
uvlong timebase = 10*1000*1000; /* clint ticks per second */
Membank membanks[] = { /* (address, size) pairs */

PHYSMEM, BANK0SIZE,
0

};
char defnvram[] = "/boot/nvram";

uintptr uartregs[] = { PAUart0 };
int nuart = nelem(uartregs);
vlong uartfreq = 384000;

uchar ether0mac[] = { 2, 0, 0, 0, 0, 1 };

/* the emulated plic doesn't seem to follow the spec; we ignore it. */
Soc soc = {

.clint = (char *)PAClint,

.uart = (char *)PAUart0,

.plic = (char *)0x40100000,

.ether[0] = (char *)0x40011000,

.hobbled= 0, /* only 1 hart */
};
Ioconf socconf[] = { /* devices without drivers that vmap their regs */

{ "clint", 64*KB, &soc.clint, },
{ "uart", PGSZ, &soc.uart, 1, },
{ "plic", 4*MB, &soc.plic, }, /* common but smaller */
0

};
Ioconf ioconfs[] = { /* devices whose drivers vmap their regs */

{ "ether", 2*PGSZ, &soc.ether[0], 2, },
0

};

 11

