
Plan 9 on 64­bit RISC­V

Geoff Collyer
geoff@collyer.net

ABSTRACT

We have ported Plan 9 to several RISC­V ‘Unix­capable’
(RV64GCSU) implementations: the Microchip" Polarfire Icicle", tinyemu
emulator, a pre­release Beagle V", StarFive" VisionFive" 2, SiFive"
HiFive Unmatched", and HiFive Premier P550. Other systems were
tried and rejected, usually for inadequate documentation.

This paper describes the porting process and makes recommenda­
tions. Some of this work is still in progress.

1. Position Statement

The RISC­V architecture is elegant; I don’t have any serious criticism of it, includ­
ing at least the standard IMAFD extensions for Unix­capable systems. (These are base
Integer instructions, Multiplication and division, Atomic memory operations, and
single­ and double­precision floating point. IMAFD is also written as ‘G’. ‘C’ indicates
ability to execute the compressed instructions.) However, proposed and approved
extensions beyond IMAFD, and other additions, are often flawed or downright rubbish.

People admire complexity.

� Rob Pike

Beauty is more important in computing than anywhere else in technology because
software is so complicated. Beauty is the ultimate defence against complexity.

� David Gelernter

Much of this is hardware and software adopted unthinkingly from PCs and ARM
devices, regardless of technical merit, probably to re­use existing designs and IP and
Linux code. Several large corporations (e.g., Intel, Alibaba) seem unable to
comprehend the ‘R’ in ‘RISC’ (i.e., keep it simple, stupid), but visible complexity is not
actually required for good performance, even if that’s easier for the hardware
designers. Unnecessary visible complexity is a failure of design. I don’t really expect a com­
pany with an instruction set with over 800 instructions (over 2,000 by some reckoning),
hundreds of MSRs, and a 2,680­page Ethernet controller manual to understand this.

 This is a modified version of this paper [Col2023]

We’ll revisit this in Recommendations and Observations.

1.1. Demented Standards

How do you tell a bad standard? If it begins with ‘‘I’’, e.g, I2O, IPMI. If it ends with
‘‘I’’, e.g., ACPI, EFI, IPMI, etc. If it has the word ‘‘intelligent’’ in it, e.g., I2O, IPMI.
Or, the best, if it has all three, e.g., IPMI.

� Ron Minnich

‘Device trees’, ACPI, (U)EFI and GUIDs are problems, not solutions, and we try to
avoid them at all costs. (Why use meaningful names when you can use long, meaning­
less strings of hex digits?) The RISC­V Platform Specification subcommittee is just flat­
out wrong to adopt virtually every mistake ever made on the IBM PC or ARM. The
RISC­V Platform Specification is disappointing; RISC­V presented an opportunity to
rethink and replace this string of disasters, most of which provide very little benefit.

1.2. Wretched Hardware

Throw out the hardware, let’s do it right.

� Steely Dan, Aja

Life is too short to deal with SD and MMC cards, GPIOs, PHYs, I2C, SPI and other
single­bit interfaces to guaranteed­model­specific hardware, and this crud shouldn’t be
necessary; hardware should be usable immediately after coming out of reset. If the
BIOS or U­boot initialize devices sufficiently to use them, that’s good enough.

2. Background

In July 2020, the Microchip Polarfire Icicle board [Mic] was due to be the first avail­
able RISC­V [Pat2017, Int] system that looked capable of running a Unix­like operating
system, including paging hardware, a gigabyte of RAM (which turns out to be actually
2GB in 2 banks), and gigabit Ethernet, [Xil] with multiple CPUs (also called cores and
RISC­V harts) capable of 64­bit and (in theory) 32­bit operation. It has one SiFive E51
RV64IMA core that lacks supervisor mode (a ‘hobbled’ hart) and starts the other four,
which are SiFive U54 RV64GC cores at 600 MHz. The board contains no graphics
hardware. We assume conformity to a minimum Privileged ISA Specification of 1.10.

Richard Miller had a 32­bit RISC­V Plan 9 [Pik1990] C compiler suite [Mil2020]
already, and was willing to create a 64­bit compiler suite. Without this, I would not
have started this porting effort.

I originally planned to port the Plan 9 9k kernel, which already ran on 64­bit
amd64 systems and could exploit a large address space, to RV32GC mode on the Icicle
while Richard worked on the RV64 C compiler, then use the RV32GC port as a basis for
an RV64GC port when the RV64 compiler was ready. 9k implements the same system
calls and a subset of the devices that 9 implements. The major device drivers are now
identical in my 9 and 9k.

2.1. Timeline

The hardware was due to arrive in mid­September 2020, which eventually slipped
to mid­October. In the meantime, we developed using the tinyemu emulator, which
emulates both RV32 and RV64 architectures on any processor architecture, though only
a single emulated processor. Tinyemu supplies no SBI and starts the kernel in machine
mode; all the other implementations have an SBI and start the kernel in supervisor
mode (except the RVB­ICE, which appears to start it in machine mode). Richard ported
tinyemu to Plan 9 and added a serial port and virtio Ethernet. I made small changes to it
to improve debugging capabilities and it has proven helpful in finding bugs where the
hardware’s response has been to just sit there dumbly. Perhaps the SBI could accept
requests on a UART to dump a hart’s registers.

When the hardware arrived, we had a 9k kernel running on tinyemu, but we then
discovered some things that would require changes. Tinyemu starts our kernel in
RISC­V ‘machine’ mode, in which paging is disabled, but all machine facilities may be
configured. The lack of paging encourages starting RAM at 0x80000000 or higher,
to match Unix kernel conventions. By early December, we had a 64­bit kernel running
on one CPU of the Icicle board using 39­bit virtual addresses (‘Sv39’). By late
December, all U54 CPUs were scheduling processes. A few C compiler fixes arrived
through mid­January. After that, various mysterious misbehaviour disappeared. By
early February, graceful reboot was working and by mid­February, paging with 48­bit
virtual addresses (‘Sv48’) was working. The system seems to be complete and solid
enough to use as a CPU server, and should be relatively easy to adapt to future RV64G
systems.

Since then, we have made minor fixes, code and performance improvements, and
adapted to various RISC­V systems, including improving SoC (system­on­chip) confi­
gurability. In particular, self­checking code has been added to verify sanity in various
conditions, and to attempt to tolerate the unexpected.

2.2. Hardware and Firmware

A note on terminology: the CLINT is the per­CPU simple interrupt controller; the
PLIC is the system­wide more­complex interrupt controller. The PLIC feeds into the
CLINTs as the external interrupt signal. The SBI[Int2022] is a sort of BIOS, but unlike a
PC BIOS, it cannot be circumvented.

On the hardware, the boot ROM/flash starts (typically) OpenSBI which then starts
U­boot, which starts our kernel in ‘supervisor’ mode, from which there is no escape,
with additional undocumented restrictions:

� read­only (or no) access to the CLINT’s timer registers;

� have to use SBI calls to set the CLINT timer (and maybe send and clear IPIs);

� SBI v0.2 HSM (hart state management) calls are not implemented in the provided
Icicle OpenSBI;

� U­boot on the Icicle only starts all CPUs (harts in RISC­V terminology) if one uses the
bootm command with an FDT to run a uImage claiming to be a Linux kernel.

A result is that we can’t switch the Icicle into RV32GC mode with the stock boot
‘ROM’, though it is possible in machine mode. So we abandoned the 32­bit port since it

can’t run on the available hardware, though it still ran in tinyemu, as the current wave
of Unix­capable systems are all RV64GC, as will be any Unix­capable systems with
more than 2GB of RAM.

There are conflicting accounts of the details of how RISC­V harts are started, par­
ticularly at what PC. U­boot on Icicle starts them all at once at the entry point in the
uImage file, while the other systems’ U­boot starts only hart 1.

2.2.1. Polarfire Icicle

There are other bits of ill­documented hardware:

� there’s an L2 cache which adheres to RISC­V cache coherence principles, so can be
largely ignored;

� the PLIC context ids apparently have consecutive values starting at 0: E51 hart 0 M
(machine) mode, U54 hart 1 M, hart 1 S (supervisor) mode, hart 2 M, hart 2 S, hart 3
M, hart 3 S, hart 4 M, and hart 4 S. These should be predictable or discoverable
without consulting a ‘device tree’.

2.2.2. SiFive U740

On SiFive­U740­based systems, use of the WFI instruction, instead of PAUSE, to
save power when idling originally produced strange and varied behaviour: console
serial output got stuck, or time gradually stopped advancing, or the system became
very busy, possibly servicing interrupts. Changes to the system since the first publica­
tion of this paper appear to have cured whatever the problem was.

2.2.2.1. Beagle V

The now­cancelled Beagle V has 8 GB of RAM, and an L2 cache that is not coherent
with DMA, thus requiring manual cache flushing, unlike the other systems. (This was
claimed to be a bug that would be fixed in production hardware, the JH7110 SoC.) It
also has a newer OpenSBI implementation that provides the HSM operations.

2.2.2.2. HiFive Unmatched

OpenSBI’s sbi_get_hart_status appears to often report the wrong hart as the sole
started hart. This was true with 2021 firmware and still with 2025 firmware.

2.2.2.3. StarFive VisionFive 2

The newly­arrived successor to the Beagle V, incorporating the JH7110 SoC, is run­
ning. The Synopsys" DWMAC is version 5.20, which is newer than the Beagle V’s ver­
sion 3.7, and incompatible. Many clock signals had to be enabled and components
taken out of reset via CRGs (system control registers) in order to communicate with the
DWMAC at all.

2.2.3. HiFive Premier P550

The HiFive Premier P550 has 16 GB of RAM and 4 1.4 GHz U84 cores. It’s an out­
of­order CPU capable of issuing 3 instructions per cycle. Like the Beagle V, its DMA is
incoherent with its caches. The caches are nominally all coherent with each other. I’ve

seen some behaviour that suggests that that may not be strictly true, at least without
adding fences. There are private L1 and L2 caches and a shared L3 cache. It has the
fastest RISC­V CPUs I’ve seen yet, but elapsed time for kernel builds, for example, is
higher than I think it should be.

2.2.4. XuanTie"/T­Head RVB­ICE

This uses the XuanTie C910 CPU, which was claimed to be quite fast. After ena­
bling paging, something goes off the rails. Linux runs on this hardware, so presumably
there’s some extremely obscure magic needed, despite T­Head’s claim of RISC­V com­
patibility. English documentation not generated by Google Translate is now available,
but there seems to be no hope of getting this machine to run Plan 9. Given the bugs in
the C910, notably those found by RISCVuzz [Tho2024] and others with configuring
PMP, this is no great loss.

2.3. RISC­V Peculiarities

Memory alignment requirements are stricter than most people are used to: natural
alignment for scalars up to and including vlong . Otherwise, we get alignment
exceptions. The 64­bit compiler promotes most scalars to longwhen pushing them as
function arguments, only vlongs, doubles, pointers, and some structs are
wider. However, there can be gaps on the stack, e.g., when pushing an int then a
pointer.

Except on the Beagle V, all CPUs, memory caches and DMA accesses are coherent,
which is a delight. The RISC­V specifications encourage this, but it is nevertheless
unusual, surprising and noteworthy for RISC designs.

3. Plan 9 Changes

These are largely confined to the architecture­dependent source directories.

3.1. Removed Assumption of Memory at Address Zero

The original 9k assumed that RAM started at physical address 0, and it took some
trial­and­error to find and repair the myriad dependencies, notably in initial memory
discovery and allocation.

3.2. No Virtual Page Table

The technique of the ‘virtual page table’ [MIT] (VPT), which injects the page table
into itself as a top­level PTE, is used in the 386 and amd64 ports, but appears to be
inapplicable to RISC­V. Lifting a level 1 PTE into the root (level 2) PTE would vastly
increase the address space that it covers, since size is implied by level. So some page
table updates had to be made explicit and do their own allocations, which is clearer
anyway (the existing VPT code is obscure).

 On Plan 9, vlong is long long, which is always 64 bits.

3.3. Variable Page Sizes and Page Table Levels

The system implements Sv39, Sv48, Sv57, and Sv64 paging, where available. Of the
supported systems, so far all support Sv39 but tinyemu and the SiFive Premier P550
implement Sv48 too. Sv57 and Sv64 are untested to date, but are straight­forward
extensions from Sv48.

3.4. SoC Configuration

Configuration for a new SoC requires editing the conf sections of kernel confi­
guration files, which now include descriptions, in C, of the SoC’s devices, and funda­
mental addresses needed early or in mkfile are specified in the
/sys/src/9k/rv directory, in the file arch/defs, where arch is a short name for
the subarchitecture (e.g., te for tinyemu). The appendix contains an example of the 64­
bit tinyemu configuration. See tecpu and pfcpu for complete examples.

3.5. Starting CPUs During Bootstrap

On x86 systems, a single CPU starts at bootstrap, and it then starts the others.
RISC­V systems may start CPUs (harts) at any time. The Icicle starts them all at once
when U­boot’s bootm command starts the kernel, which is necessary because its SBI
lacks the HSM commands that would otherwise be needed. The other systems start a
single CPU (or at least try to), which uses the SBI HSM calls to start the others. The
start­up code now copes with those possibilities, and the situation of having just been
restarted via /dev/reboot.

3.6. A C Idiom

In a C expression such as in the following, using Plan 9 types:

uvlong uvl, va;

uvl &= ~((1<<5) - 1); /* zero low 5 bits */
uvl = va & ~((1U<<12) - 1);/* get pure page number */

the result will probably not be what was intended. The ~ operator will have an int or
uint operand, yielding a result of the same type, 32 bits wide. This result will be
widened for the & or &= operator, but it may be zero­extended, thus ensuring that the
result in uvl will have zeroes in its upper 32 bits. In particular, 64­bit physical
addresses of RAM on RISC­V were being truncated. 6c and now jc detect this inadver­
tent zero­extension in the uint case.

Ensuring that the operand (and thus result type) of ~ is vlong or uvlong
avoids this problem. We have made this change throughout 9k.

4. Performance

These are times to build the Plan 9 rv kernel from scratch mostly on RV64GC sys­
tems with 1Gb/s Ethernet using the same 10Gb/s Ethernet file server, except as noted.
These were all effectively diskless, as is normal for Plan 9 systems. To load caches
before measuring, these commands were executed:

mk clean; mk; mk clean; time mk >/dev/null

and yielded these results:

user sys real C Iss. GHz description___
1.07u 1.73s 2.04r 4 7? 3.8 amd64 Xeon, 10GbE
1.96u 1.67s 2.58r 4 6.2? 3.1 386 nuc5i7 ___
2.81u 2.22s 7.40r 4 3 1.4 hifive premier p550, ipis
3.43u 4.15s 7.24r 4 ~6.8 1.5 arm raspberry pi 4 HZ=200

6.47u 3.29s 8.93r 4 2 1.2 hifive unmatched, 2025, no ipis
6.65u 3.75s 7.66r 4 2 1.25 visionfive 2 (wfi, no ipis)
6.90u 4.21s 7.72r 4 2 1.2 hifive unmatched, 2025, ipis 0 ns.
7.25u 4.58s 6.28r 4 2 1.25 visionfive 2 (wfi, ipis 0 ns.)
7.43u 4.30s 6.84r 4 2 1.25 visionfive 2 (wfi, ipis >2µs.)
10.14u 13.63s 19.10r 2 2 1 arm cortex-a7 trimslice

14.60u 7.09s 14.47r 4 1 0.6 Icicle, no ipis
14.99u 9.11s 50.91r 2 2 1 pre-release beagle v *
38.52u 20.44s 64.98r 1 1.5 0.68 mips 24k routerboard, no fp ___
144.87u 47.99s 242.52r 1 7? 3.5 tinyemu on 386 Xeon HZ=200

C is the number of cores, Iss. is the number of instructions issued per cycle, GHz is the
CPU speed in gigahertz.

See this earlier paper [Col2010] for comparison with older Plan 9 systems of vari­
ous architectures.

5. Recommendations and Observations

Microchip’s documentation seems to be unclear if it’s intended for someone
repackaging the hardware or for the ultimate end user. It often specifies that some
value is programmable but doesn’t provide the choice of value used in the Icicle. It
would be helpful to have end user documentation.

The RISC­V architecture tries to leave some things unspecified to allow implemen­
tations some leeway, requiring that platform documentation provide the actual values
implemented, but the platform makers don’t always do so. Concern for RISC­V imple­
mentors should be balanced with concern for users; vagueness is rarely useful to system
programmers. It would be more helpful to be able to query such values programmati­
cally without consulting a ‘device tree’.

All the timers provided require a priori knowledge of their frequencies. To let
software determine the actual frequencies, it would be very helpful to have a real­time
clock that ticks at a known, fixed rate (e.g., 100 times per second) or a register contain­
ing the (fixed) CLINT timer frequency. As it stands, the frequencies have to be sup­
plied to software.

* using a different, 1Gb/s file server
 32­bit Plan 9

Detecting and reporting infinitely­recursive traps (perhaps in SBI) would be quite
helpful during development, for example, if the STVEC CSR (Control and Status
Register) contains a no­longer valid virtual address. We have modified tinyemu to do
this.

Requiring all RISC­V systems (or at least Unix­capable ones) to have an 8250­
compatible console UART at a common, fixed physical address and a common fre­
quency would help with porting. SiFive has its own non­8250­compatible UART.

Micro­USB connectors need to be braced very firmly; a slight tug on an attached
cable should not yank the connector off the board. The Unmatched board is quite
flimsy. Its SD card slot isn’t much better.

The Icicle’s power cable is fragile and prone to interrupting power when flexed.

Suppliers need to implement both PXE booting and the saveenv command in
their U­boot variants from the very start. These are important capabilities for kernel
developers and must not be pushed off into the future. The Icicle at least has working
PXE booting on one Ethernet, but no saveenv command, so automatic booting of
Plan 9 kernels at reset won’t work. The otherwise­promising Sipeed Nezha board’s U­
boot lacks PXE booting entirely, which makes it too much of a hassle to be worthwhile.

5.1. Assessment of RISC­V

In general, RISC­V seems to be a pleasant architecture with a few minor infelicities.
(Implementing graceful reboot on the Icicle was a challenge.) Some additions and
extensions add the sort of unnecessary and clumsy complexity that has made X86 the
dog’s breakfast that it is (e.g., the XuanTie C910). The XuanTie processors seem to have
reintroduced all the mistakes that ARM made and that RISC­V carefully omitted. SBI is
another story altogether.

The CSRR* instructions hard­code the CSR number; they would be easier to
invoke from C if the CSR number were held in rs2 instead, thus allowing use of less
assembly language while avoiding executing code generated on­the­fly.

If the kernel’s stack pointer contains an invalid address (e.g., a change in page
tables makes it invalid), the trap to report the invalid address will trap endlessly due to
an invalid stack pointer. SBI could perhaps note and report this.

A register that returns the PLIC context for machine mode on the current CPU
would ease PLIC use without requiring external assistance.

It would be useful in a few cases to be able to determine the nominal privilege
mode, even if it’s virtualized. Being able to probe for a given CSR without causing a
trap would help too.

Machine mode seems dubious. Supervisor mode should be able to control the
(possibly virtual) machine, and a mode without the possibility of paging is not helpful.
Running Plan 9 or a UNIX kernel in machine mode with reasonable efficiency is infeasi­
ble; the kernel needs to use virtual memory. When running on tinyemu, we initially
configure some M­mode­only facilities, delegate any possible M­mode traps and inter­
rupts to S­mode, and switch to S­mode. Thereafter, we catch and forward M­mode
traps to S­mode.

The focus on undetectable virtualization seems excessive. Being able to

programmatically at least confirm various attributes of the environment in machine and
supervisor modes would be helpful.

PMP (Physical Memory Protection) is probably unnecessary on systems with
MMUs, and is a bit of a pain to configure.

5.1.1. SBI

SBI seems largely unnecessary yet it insists on disabling some hardware features
that a kernel could use directly and requiring use of SBI instead. I don’t want or need
another layer of software between the hardware and my kernel. The SBI specification is
imprecise. For example, what are the units of the timer functions? Which timer do they
set? What is that timer’s frequency? Is the timer global or per­hart? Under what con­
ditions can sbi_send_ipi (FID 0, EID 4) fail? It has been seen to fail with valid hart ids on
OpenSBI. Which supervisor­mode facilities has it disabled?

There is some evidence of bugs in OpenSBI calls, e.g., sbi_get_hart_status.

6. Future Work

Bootstrapping is clumsy; a future upgrade to the Icicle’s U­boot should yield an
automatic way to PXE boot at power­on or reset. (Until then, fshalt(8) provides graceful
reboots.)

There is hardware that we do not (yet) drive: an open PCI­E slot, an FPGA on the
Icicle, and USB controller(s). Icicle documentation for USB is not obviously locatable.
Icicle PCI­E requires newer HSS (hart software services) firmware.

7. Availability

A reasonably­stable distribution of the RISC­V kernel and the compiler used to
build it, along with support files, is maintained in

https://9p.io/sources/contrib/geoff/riscv/dist.9k-rv.tgz.

8. Acknowledgements

Richard Miller developed the 32­bit and 64­bit RISC­V C compiler suites for Plan 9.
He has been very helpful, fixing (minor) bugs, helping to find my obscure bugs, contri­
buting sdio/mmc drivers, and extending the assemblers. The late Jim McKie created the
64­bit 9k kernel and Charles Forsyth created the amd64 compiler suite for the first
architecture. We are building, of course, on years of work at Bell Labs creating and
developing Plan 9.

References

Col2010. Geoff Collyer, ‘‘Recent Plan 9 Work at Bell Labs,’’ Fifth International Workshop
on Plan 9, Seattle, invited talk, http://www.collyer.net/who/­
geoff/ports.pdf (October 2010).

Col2023. Geoff Collyer, ‘‘Plan 9 on 64­bit RISC­V,’’ Ninth International Workshop on Plan
9, Waterloo (21 April 2023).

Int2022. RISC­V International, RISC­V Supervisor Binary Interface Specification,
https://github.com/riscv/riscv-sbi-doc/blob/master/­
riscv-sbi.adoc, 2022.

Int. RISC­V International, RISC­V home, http://riscv.org.

Mic. Microsemi, Icicle, https://www.microsemi.com/products/­
fpga-soc.

Mil2020. Richard Miller, A Plan 9 C Compiler for RISC­V RV32GC and RV64GC,
https://ossg.bcs.org/wp-
content/uploads/criscv64.pdf, 19 Oct 2020.

MIT. MIT, Address translation and sharing using page tables,
https://pdos.csail.mit.edu/6.828/2007/lec/l5.html.

Pat2017. David Patterson, Andrew Waterman, The RISC­V Reader, Strawberry Canyon
(7 November 2017). http://riscvbook.com

Pik1990. Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, ‘‘Plan 9 from Bell
Labs,’’ Proc. of the Summer 1990 UKUUG Conf., London, pp. 1­9 (July, 1990).

Tho2024. Fabian Thomas, Lorenz Hetterich et al., RISCVuzz: Discovering Architectural
CPU Vulnerabilities via Differential Hardware Fuzzing,
https://ghostwriteattack.com/riscvuzz.pdf, 7 August 2024.

Xil. Xilinx, Zynq 7000 SoC Technical Reference Manual (UG585),
https://www.xilinx.com/support/documentation/user_guides/­

ug585-Zynq-7000-TRM.pdf.

Appendix

/* 64-bit tinyemu configuration from tecpu kernel config */
#include "riscv64.h"

int cpuserver = 1;
int idlepause = 1;
uvlong cpuhz = 156*1000*1000; /* from timesync, emulated on 3ghz nuc */
uvlong timebase = 10*1000*1000; /* clint ticks per second */
Membank membanks[] = { /* (address, size) pairs */

PHYSMEM, BANK0SIZE,
0

};
char defnvram[] = "/boot/nvram";

uintptr uartregs[] = { PAUart0 };
int nuart = nelem(uartregs);
vlong uartfreq = 384000;

uchar ether0mac[] = { 2, 0, 0, 0, 0, 1 };

/* the emulated plic doesn't seem to follow the spec; we ignore it. */
Soc soc = {

.clint = (char *)PAClint,

.uart = (char *)PAUart0,

.plic = (char *)0x40100000,

.ether[0] = (char *)0x40011000,

.hobbled= 0, /* only 1 hart */
};
Ioconf socconf[] = { /* devices without drivers that vmap their regs */

{ "clint", 64*KB, &soc.clint, },
{ "uart", PGSZ, &soc.uart, 1, },
{ "plic", 4*MB, &soc.plic, }, /* common but smaller */
0

};
Ioconf ioconfs[] = { /* devices whose drivers vmap their regs */

{ "ether", 2*PGSZ, &soc.ether[0], 2, },
0

};

