Can’t Happen
or
[* NOTREACHED */
or
Real Programs Dump Core*

© 1984, 1985
lan Darwin

SoftQuad, Inc.,
339 Bloor Street West, # 217,
Toronto, Ontario, Canada
M5S 1W7
utzoo!sglian
ian@sqg.com

Geof Collyer

University of Toronto Computing Services
255 Huron Street - UTCS
Toronto, Ontario, Canada

M5S 1A1
geoff@stat.toronto.edu (utzoo!utstat!geoff)

ABSTRACT

UNIX T programmers too ofterail to check for failure of system calls or functions,
taking the &miliar teen-age attitude that “it cariiappen to me (or my prograrn)This
paper will attempt to convince its audience toetgkophylactic measuresThose who
take such measures will be healthier — and less prone to surprises — than those who don
take such measures.

In the tradition of the classi€lements of Rigramming Stylesome real-world pro-
grams will be criticised publiclyActual production (osoi-disantproduction)uNIX pro-
grams and subsystems will beaenined. Eaclof these ‘provides one or more lessons in
style? We present both before and after versions of most code fragments.

Come on out and see if we abuse one of your programs — or your programming
style!

Introduction

Many people think that errors can only happen to “the other’guynfortunately current versions of

UNIX do not preide a system call to tell if you're running as the other..guBut | hear that Dennis is
working on it!

Why is net.hugs such an ae® rewgroup? W1 is the USENIX 84.2 tape filled with nothing but 4.2
bugs and fies? WIly doeseachrelease of System N claim fix hundreds of ng bugs? Thg neve, of
course, claim tontroduce new bugs. Clearlysomething is rotten in the state of safte. Onehing that

* Paper delered at the Dallas USENIX Conference, January 21 1985
T UNIX is a trademark of Bell Laboratories.

December 30, 1992

we see wrong is the attitude that “errors wdwppen to me, so | dameed to check for them.

So by nav you've gathered that our paper is ab@NIX programming style And | can already hear
you asking: Who cares about style? Who timg? Why should | care?!’ll tell you why. Because you —
there in the fifteenth w — your database is being corrupted by null pointers right this moment. And you -
in the three-piece suit at the back — yoerriel will die a horrible death during your next vacation, and
you'll have 1o come back early to fix it. And you people milling about near the exit so you can sneak out if
this is one of those dull papers — yoonit find out what @aits your code unless you stay for the whole
talk!

Let me tell you briefly (I promise!) A Tale ofwb Systems, the UNIX and the Emgous. ‘There
dwelt in the land of N& Jersg the UNIX, a fair maid whom sants travelled far to admiré. T he
Emveeous was envious of thNIX for her natural grace; theNIX however, ourned the Emveeous, think-
ing him a course, vulgar fello One day her suspicions were confirmed when shetisat he had more
manuals listing his errors and sins than she had manuals describing her entBetlis. theUNIX grew
into middle age and gotuby, she became careless, and made ymaistakes, and forgot to check these
errors. Andthe scribes duly observed these errors, and duly recorded them. Audditelied old and
unhapyp, for she s& in her final hour that her error messages manual hagdngnealignantly to become
large, larger than that of that old simpleton, the Emveeous.

Is there a moral in this sad taléf2zhere is, | belige it is this: If you want a system that forces you to
do everything its way, that handholds and spoonfeeds you, that spends a third of its resources checking for
errors you might hae made, that spes myriad messages on your terminal at random intervals, that sings
you a sad song when you Weaout a comma, in short, “If you want MVS, you kmavhere to find it.

Our plan is to present some guidelines for safe, surprise-free programfakigg after The Ele-
ments of Rsgramming Style we’ll present real-world examples, suggest imypnoents and dr& conclu-
sions. Theexamples are drawn from our own experience in maintaining code on the depesystems
we currently maintain on four different computer architectuiidsy come from seeral UNIXes to which
we hae acess (some source and some binary), and from public domain lelaahg.of these real-wrld
examples hee been in use for years, which stethat its possible for latent bugs to go undetected for long
periods of time. Scratch gharge production project and you'll find latent bugs; we picked thesmples
because thewere at hand.

The remainder of the paper consists of sections on planning (‘The art of thinking’), read the manual
(‘rtfm’), not reinventing the wheel, Style, and coding blundefhis paper is concerned with the C pro-
gramming language; discussion of programming stylawk, lex/yacg and insh is left for a future pro-
ject.

We hope that those whose code weédnaiticised will take it as onstructve aiticism rather than as
personal criticism. Our aim is to impg not to insult.

1. Examples

Pontification without proof is pointless. Here are some examples ééétie¢ code and hw it can
be improed.

1.1. Theart of thinking

The art of thinking (before you code) often seems a lost art. Such safeguaatidatdyg the input
before you read it and keeping the user interface constant from one command to the next, are good things
whose time has not (we hope) truly passed.

1.1.1. Checkthe input?

There are times when steasy to check the input for certain obvious errdvany programs nwo
check that their input file is not a directory; this is probably a good thing. Much work remains to be done in
the area of inputalidation. Heres asimple example from a binary-only system (it happens to be UniSoft
System Ybut most anyuNIX will exhibit this behaviour):

December 30, 1992

$ tc tmp filel

t8d{ @T@t@TE@TE@MM@Ig@7" @HO@M@LA@LA@H@la@6v@h@ @L@N@V@H@s5r@g@4y@q@G@M@ M(

c@3d@u@foaM@L@L@H@n2x@m@1ow@I@I@CA@H|@0{@I@P@H@P@;;lu@Nf@H@I@I@L@
H@;,da@M/r@H

@I@I@QL@HI@.u@Ik@9IMKk?RfRGRGRIRM7| @;

$

On a Tek terminal, the resultsould be less spectacular but no less erroneous. Consider another
example:
$ tc pascalprog.p
The results would be similar to that shown.

The only valid input to this program is a file created by the old (notmedii) These files imariably
start with an initialise command, which has the octal value 0100.

Note also that the second argument is ignored with no error mesEage@rogram belvas as if t
‘thinks’ that all is well, but produces voluminous trash, in the presence of a single typographical error.
How it might have looked:
$ tc kmp filel
tc: /tmp: not trof output
tc: filel: cannot open (no such file or directory)

$

How little work it would be to check for this erraand hav much more pleasant it would malkfe, is
something to cogitate on.

Test input for plausibility and validity

1.1.2. Directories ae fun

Directories can be a lot of fun when you read them into a program which expects a dariije.
places check, but mgmore do not. Here is 4.2 Berkmail works.

$ Mail -f /usr/spool/mail

"fusr/spool/mail": 0 messages [Read only]
&h

No applicable messages

& X

$

How it might behae:

$ Mail -f /usr/spool/mail
Mail: "/usr/spool/mail" is a directory!

$

1.1.3. Don'tchange the interface
USG systems (PWB, System lll, System V) come Vebelit and its brethren.

December 30, 1992

$ labelit /dev/rgmcOa gmcOa root
Current fsname: ROD Current volname: gmcOa, \
Blocks: 13566, Inodes: 1904
FS Units: 1Kb, Date last mounted: Thu Jan 3 20:09:25
NEW fsname = gmc0Oa, NEW volname\
= root -- DEL if wrong!! <type DEL>

$

There are a couple of problems with the examplev@almdrange interface, and no feedback where
feedback is called for.

There is something quite backwards about this prograafiaviour The program tells you what$t’
going to do, says ‘DEL if wrong!!’, waits 10 seconds, then goes ahead and does it!

Everything else inJNIXdom either assumes that you tnwhat you're doing, or asks with some
user-friendly prompt like

last chance before scribbling on /devi/....

What logic can there be for the decision to mé#ls program use a wholewenethod of interac-
tion? Therationale may be that USG systems are designed for large DP shops, with COBOL and Opera-
tors, and that Operators are somelzolower class of human than normaiX users. Idon't think mary
operators would li& this line of reasoning.

Scenario: you are ceating from v7 to System lll.You've just typed a command
volcopy /dev/hplb /dev/hpOc

that will mistakenly cop the distribution @er top of what yowe keen working on all night, instead of vice
versa. Thephone rings gworse, your manager walks in and jbas to talk right this instant.

“Tom, | need to talk to you about those...
“ Not naow, boss, this is important!”
“1t'll only take a ew ®conds”

It did - about ten seconds, iadt. Ary other UNIX utility would wait until you get dfthe phone.\Volcopy,
however, will wait ten secondsWell, | hope you got it right.

Just as a person who holds another at gunpoint assumes full moral responsibility for the actions of his
victim, the programmer whiorces the user to interact with the program (as opposed to typing a command
and haing it done) takes on responsibility for the usections. Theleast this program could do,\niag
given me tree lines of dull, boring information would be toejime ome important information, Ik
whether it went ahead and did the change or b system | was on was quitesly and several seconds
went by before | typed the DEL andveral seconds more before the prompt came b&kks the change
done? Quitéonestly at the time of writing, | do not kne. Glad it was a labeling job, not a disk-to-disk
volume copy!

What does the program do if Ifeany INTR key st to CTRL/C and my erasekis DEL? Mary
Operators in UNIX shops are cross-trained to VMS, wherattigecommand is implemented globally by
patching the system image. Should this be taken into account?

Heres how it could have been:

$ labelit /dev/rgmcOa gmcOa root

Current fsname: ROD Current volname: gmcOa, \
Blocks: 13566, Inodes: 1904

About to change fsname to gmcOa, volname to\
root - type a 'y’ to continue:y

$

December 30, 1992

In this case no confirmation is necessary; if | type y it will do it, if not, fibis is repeatable and
predictable, so no feedback is needed, although it would not be out of iee {fg¢ importance of the
operation) to printf “doné’after the write.

The cowentional UNIX interface is widely used and understood. The next major interface will prob-
ably be something Il what the Blit (I'm sorry the 5620 DMD) preides. Lets rot go half-way in the
interim.

Use a consistent dialogue.

1.2. Readthe manual (rtfm)

The UNIX manual set is not yet dedred in a moving van (although | hear a group in ATT dsking
on it), so theres really no excuse for writing reams of C code before wowead most of the manual set.
But people do it.

1.2.1. Signals- to catch or not to catch

SomeUNIX programmers he gill not readUNIX Programmingby Kernighan and Ritchie inol
ume 2 of theNIX Programmes Manual. Theiprograms catch signals such as interrupt and qeithik:

#include <signal.h>
extern int onintr();

signal(SIGINT onintr);

So you write the program, and test it once, and test it a second time hitting your ¢ ERckit does the
right thing. So you immediately declare it ‘in production’, and post it to net.soufaes.5,000 people
save @pies of it — 200 of them on our machines alone — thank goy much! And a fe of the 5,000
evantually get around to looking at what e savel in their src subtrees, and avieof these actually
compile the programAnd it seems to do the right thing. And then one bright gulay they background
it, and then interrupt a

rm*

that thg accidentally typed afterards. Andyour program wakes up and saysHello, I'm Fred. You hit
interrupt. Whatdo you want to do na?” and confuses the heck out of someone, who dbo&soiv what
his erroneous remve has done.Or worse, it5 a bng-running program, and théackground it with the
output piped tdpr, and after thg interrupt the dulty rm command and an hour later find yrgot no out-
put, they come to me and sayY'our line printer spooler isusted. and | waste half an hour tracking it
down. Again, thank you!

It's mot really that hard to catch signals correctithough it does add an extra 001 line(s) of code.
Heres a ample:

#include <signal.h>
extern int onintr();

if (signal(SIGINT, SIG_IGN) != SIG_IGN) /* iff not ignoring interrupts */
(void) signal(SIGINT onintr); /* then catch them */

Programs which catchelypoard signalswven in the background can mekheir users wary ofwver typing
interrupt or quit (or hanging up their connection), since the users auee’whether or not some back-
ground program will spring to life and erroneously catch the resulting sigiéd. is arguably a design
flaw in the UNIX signal mechanismPerhapdUNIX should ignore attempts to catch signals which were
being ignored when the current programswxeced. Thiswould male the use of backgrounding with
andnohup fool-proof. Havever, UNIX is what it is.

December 30, 1992

Don't blindly catch signals

A Digression on Lint

The previous example illustrates one of pnaommon errors which can be easily caught if you are
developing code on a realNIX system. Thdint program contains much of the debugging code that is left
out of the C compilerdthough there is a tendgnin newer compilers to reinsert some of this checking.
We drongly advise that all programs be checked for lint, and that you check the output cargfuisll-
nigh impossible to silencknt about some f& functions (such amalloc()) but in generalint will give
you good advise.

Lint is a scroll of forgieness
for mary sins of programming.
Read it wiselyand you will prosper.
Fal to read it and you will
hear maniacal laughter.

Thou shalt use lint.

1.2.2. SystenCalls
In what program do we find the following code sequence:

open("/", 0);
dup(0);
dup(0);

V7 init, das. Thereare two other occurrences, in which the opens angen(tty, 2);”’ and “open(ctty 2);".

The authoknew, by god, that those system calls coulelverfail. As a result, when the kernel file or inode
tables fill,init fails to re-populate some terminals wittit children and thugetty’s. Thus those terminals

will never inheritinit’s until the next crash or rebootWe know: the file and inode tables aresipposed to

fill, thus itcan’t happen A common counteargument is that in such a case there is nothing sensible to be
done. ‘et a momens thought often reeals a better alternag than failing to check. In this case, since the
code in question is running in a childioft, init can sleep briefly and try again if a system call such as
dup fails or if anopenfails due to resource exhaustion.

1.2.3. /de/kmem - open sewer or open sore?

A common disease in programs written at Béakis to gpen/dev/kmemand grub the loadvarages
out by the dirtiest means possible. The following is from the 4.2B&Rimail source, conf.c, slightly
reformatted for brevity.

December 30, 1992

#include <nlist.h>
struct nlistNI[] = {
#define X_AENRUN O

h

{" _aenrun"}, {0},

getla()

{

}

static int kmem = -1;
double &enrun[3];

/*

* kmem opened here and nlist

* called for /vmunix with NI

*

(void) Iseek(kmem, (long) NI[X_AVENRUN].n_value, 0);
(void) read(kmem \aenrun, sizeof(aenrun));

return ((int) (&enrun[0] + 0.5));

(void) read should be wided. Therunning lernel may not be /vmunix and the read may not return as
mary bytes as expected, leaving trash veraun.

/* same declarations */

getla()

{

}

static int kmem = -1;
double aenrun[3];
extern off_t Iseek();

/*

* kmem opened here and nlist

* called for /vmunix with NI

*

if (Iseek(kmem, (long) NI[X_AVENRUN].n_value, 0) <O ||
read(kmem, @enrun, sizeof @enrun) != sizeof genrun)

return -1; [* cant be a\alid load aerage */
return ((int) (&enrun[0] + 0.5));

Data that you “know’are there, wort’be.

Assume that system calls will fail capriciously.

Once this routine is correct, it should be put in a system library so that programmers widépot k
reinventing it. Apparently it was in 2.9BSDub not in 4.2BSD; perhaps this will be included in th&tne
release of 4.2.

1.2.4. Fileswill always open and they neer need to be closed

The USENET ‘B’ Navs system in its present (late 1984) state is a fruitful source of examples for a
paper on our topicHere is one small example: inews.c often fails to check that fopen succeedadsand f
to close open FILEs.

December 30, 1992

actfp = fopen(ACTIVE, "r+");
for(;;) {
fpos = ftell(actfp);
if (fgets(afline, sizeof afline, actfp) == NULL) {
unlock();
return FALSE; /* No such newsgroup locally */

}

fclose(actfp);

Stdio tends to be unamused when handed null pointers, asld We if ACTIVE could not be opened for
reading and writing for gnnumber of reasons: no such file, no permission, full i-node table, full file table,
etc. Iffgets encounters end of file, this code will return, leaving ACTIVE open.

actfp = fopen(ACTIVE, "r+");
if (actfp == NULL)
xerror("Cannot update %s\n", ACTIVE);
for(;;) {
fpos = ftell(actfp);
if (fgets(afline, sizeof afline, actfp) == NULL) {
unlock();
fclose(actfp);
return FALSE; /* No such newsgroup locally */

}
fclose(actfp);

Files will sometimes be unopenable for reasons yout dorésee when coding; it is as well to be prepared
for such possibilities, hower unlikely you (erroneously) beke them to be.

Don’t assume God likes you: open and fopen will fail.

1.2.5. Systentalls never fail in my programs

The ultimate arrognce is to assume that the system calls and functieolgethby ane’s program can
never fail. The following is from 4.2BSD,/ust/src/lib/libc/net/ruserpass.c This module is a fruitful
source of examples, so we shall return to it later.

ruserpass(host, aname, apass)
char *host, **aname, **apass;

{

renv(host, aname, apass);
if (*faname == 0 || *apass == 0)
rnetrc(host, aname, apass);
if (*faname == 0) {
char *myname = getlogin();
*aname = malloc(16);
printf("Name (%s:%s): ", host, myname);
fflush(stdout);
if (read(2, *aname, 16) <= 0)

This code knows thajetlogin andmalloc can neer, ever fail. Unfortunatelyit is wrong. Redirecting all

December 30, 1992

three standard file descriptorsay from ary terminal (e.g. asohup(1) does) will mak getlogin fail con-
sistently When this happensuserpasswill cheerfully dereferencenyname which is nav a rull pointer,
possibly causing a core dump.

Malloc seldom fails on wrking programs in 4.2BSD on &AX. As a result, programmers deop
the nasty habit of failing to check famalloc failing. In addition to making their own debugging harder
(sincemalloc can fail when you are debugging a prograweneon 42), this causes endless grief for those
using non-paginggNIXes.

All the world’s NOT a \AX.

ruserpass(host, aname, apass)
char *host, **aname, **apass;
{
renv(host, aname, apass);
if (*faname == 0 || *apass == 0)
rnetrc(host, aname, apass);
if (*faname == 0) {
char *myname = getlogin();

if (myname == NULL)
myname = "unknown";
*aname = malloc(16);
if (*faname == NULL)
error("cant allocate memory for password",
(char *)NULL);
printf("Name (%s:%s): ", host, myname);
fflush(stdout);
if (read(2, *aname, 16) <= 0)

This version will behee sanely when functions or system calls fail, ualike original.

Do something sensible when system calls or functions fail

1.3. Don't Reinvent the Wheel

The C libraries contain mgnmary valuable routines. So does /bilVhy reirvent them? | know
not, but people continue to reamt.

1.3.1. Useexisting tools
What does this do?

December 30, 1992

-10 -

if (freopen("/ust/lib/whatis”, "r", stdin) == NULL) {
perror(“/usr/lib/whatis");
exit (1);

gotit = calloc(1, (unsigned) blklen((int *)argv));
while (fgets(buf, sizeof buf, stdin) = NULL)
for (vp = argv; *vp; vp++)
if (match(buf, *vp)) {
printf("%s", buf);
gotit[vp - argv] = 1;
for (vp++; *vp; vp++)
if (match(buf, *vp))
gotit[vp - argv] = 1;
break;
}
for (vp = argv; *vp; vp++)
if (gotit[vp - argv] == 0)
printf("%s: nothing apropriate\n", *vp);

What would happen if thealloc call failed?

The Berleley system contains the commangroposused to find manualegwords. Whileits name
might more appropriately ka keenfindman the programknows that it is to be called as ‘apropos’,
because it looks at gv[0]. It is glued into the source for thman command. Atary rate, the code
attempts to reimplememgrep, and does so in a ay that is possibly correct but inarguablyveloHere is
our findman, which runs about three times as fashppos

#! /bin/sh
findman - find manual pagewven topic(s)

PATH=/bin:/usr/bin:/usr/ucb ; exporiA®H
INDEX=/ust/lib/whatis

for f
do
grep $f $INDEX echo ‘basename $0*:\
nothing appropriate for $f
done

This code could be further speeded up by ustpgp or fgrep, or by wsing the -y/-i option for case
insensitivity but our change will work as shown on almosy aoncevable UNIX system.

There has been some debate on USENET recently (and three months ago, and six months ago, and
...) aboutreplacing C programs with shell files avide vesa. Our criteria state that a program must do
one function that is unique, and do it well, to be a C proghathen you reigent a shell file to be a C pro-
gram, you lose the benefit of years of tuning (‘hacking?Pich has gone into the underlying tool, in this
casegrep. You also lose the generality of the well-formed tool, in this case the ability to gregditarre
expressions, do case-insengitizarches, etc.

Don't reinvent the flat tire

This is also a technical objection to the (probably inevitable) process afridling’ UNIX and the
rise of thecat(1) Reference ManualWhen the standardNIX tools become options, as yheill in the

December 30, 1992

-11 -

next few years due to marketing pressures to conform tdotlvest common denominator (and because of
all those people who tried taip UNIX systems with 10MB hard-flogpwinchesters), then the use of the
standard tools may become a lost art w peogrammers.

1.3.2. Rarsing Program Arguments (argv scanning)
What does this do on your 4.2 system?

/bin/mail -r

There are billions of different ways of parsiagv, the list of command line arguments passed to a C pro-
gram. Theproblem is that theare all diferent. TheUSG long ago recognised this as a serious problem,
and implementedjetopt(3) to handle the problemSeveral public domain versions of this routineviea
been posted toet.sources At the Dallas UniForum in Januard985, AT&T publishedthe source for the
latest version of System Wetopt(1) andgetopt(3) in hopes that people will use these functiofbte
library routinegetopt really should be invery C library on gery UNIX system in the warld. If it’s not on
your system, add it. And use it.

Use ofgetopt(3) is a standard at our installatioVe havein a file called/usr/pub/template.ahe
skeleton of a complete C program with all the argument checking and basic declarations aliledaly b
Copies of this file will be posted to net.sources or may be had by electronic mail request to either author.

People are alays trying to liild more complicated ‘argv craeks’. To our mind, getopt(3) has

proven satisfactory in the construction of dozens of small programs and the reshaping of dozens of others.

Getopt(3) isnt IBM TSO'’s IKIPARSE, but then again, thisusiIX.

Here is my (Darwin’s) currentersion of/usr/pub/template.cwhich | hack from with an editor to
create almost gmew C pogram or to clean up an existing oo make a rew grogram, | need only edit
all the ‘xxx’ strings, so | can concentrate on writingracess()that gets the job done instead of typingcar
and argv How mary times hae you typed ‘main(argc, argv)’ in your life?

December 30, 1992

-12 -

/*
* name - purpose Xxx
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

#define MAXSTR 500

int dehug;

char *progname;
struct stat statbuf;
void error(),ext();

/*
* main - parse arguments and handle options
*/
main(argc, argv)
int argc;
char *argv([];
{ .
int c;
int errflg = 0;
FILE *in;
extern int optind;
extern char *optarg;
extern FILE *efopen();

progname = argVv[0];

while ((c = getopt(argc, argidxxx")) = EOF)
switch (c) {
case 'Xxx':
XXX
break;
case 'd"
++debug;
break;
case '?":
default:
errflg++;
break;

}

if (errflg) {
(void) fprintf(stdery "usage: %s xxx [file] ...\n", progname);
exit(2);

}

if (optind >= argc)
process(stdin, "stdin");
else
for (; optind < argc; optind++)
if (strcmp(argv[optind], "-") == 0)

December 30, 1992

-13 -

process(stdin, "-");
else {

in = efopen(argv[optind], "r");

if (fstat(fileno(in), &statbuf) != 0)
error("cant fstat %s", argv[optind]);

if (statbuf.st_mode & S_IFDIR)
error("%s is directory!", argv[optind]);

process(in, argv[optind]);

(void) fclose(in);

exit(0);
}

/*

* process - process input file
*/

process(in, inname)

FILE *in;

char *inname;

{
}

XXX

Scan command line arguments in a standard way

1.3.3. csh the self-contained shell

The Berleley shell csh is reasonably well known and widely used and its externaks treeen subject
to some criticism. The internals c§h are at least as bad, but lesser known.

Csh contains its own versions afialloc and_doprnt. It is thus unable to usstdio or some other
functions in the C libratyWhen we attempted to linksh with a faster version ajepwentthat usestdio
and armdbmdata base for the password file, we found ¢ishtfailed mysteriously.

Our fix was to ma&csh use the old, sle gepwent. Such is the price of bad coding. (Neither of us
usescsh, so we @n’'t much care about its performance.)

The reason thatsh was written this way is that it contains so nyafeatures that it auldn' fit on
PDP-11UNIXes unless the C library was hacked out. In owvyvee ketter approach would ta keen to
eliminate a fev features — this shell has enough bells and whistles that oneoaotdd profitably be
dropped.

Don't provide private versions of C library functions unlessittaee declaredstatic (i.e. invisible to
other object files).

Don't fight the C library; use it.

1.4. CStyle and Portability

Coding style is in some ways a matter of personal preferdBgethere are some things that just
don't work, or which are indicate d underlying sloppiness, or are just poor practi€artability at a
working level means the refusal to include code that is bound up in the shape of the particular digital

December 30, 1992

-14 -

computer we happen to be running on.

1.4.1. Magicnumbers

Using a literal numeric constant in-line is almostagls a bad idea, since the reader of such code is
given little clue hav the number was demd or what it representsWe return to 4.2BSD’suserpass

ruserpass(host, aname, apass)
char *host, **aname, **apass;

{

renv(host, aname, apass);
if (*faname == 0 || *apass == 0)
rnetrc(host, aname, apass);
if (*faname == 0) {
char *myname = getlogin();
*aname = malloc(16);
printf("Name (%s:%s): ", host, myname);
fflush(stdout);
if (read(2, *aname, 16) <= 0)

Note the magic numbers: 0, 2 and 16. The first three zeroes are null poiifteriast zero is used to test
for an error while reading the passdor end of file (a zero count). The 2 is the file descriptor of the stan-
dard error output. 16 is the (arbitrary) maximum length of a password, including the null byte at the end.

#define MAXPWLEN 15
#define STDERR 2
ruserpass(host, aname, apass)
char *host, **aname, **apass;
{
renv(host, aname, apass);
if (*faname == NULL || *apass == NULL)
rnetrc(host, aname, apass);
if (*faname == NULL) {
char *myname = getlogin();

aname = malloc(MAXPWLEN+1); / 1 is for\
the null byte */
printf("Name (%s:%s): ", host, myname);
fflush(stdout);
if (read(STDERR, *aname, MAXPWLEN) <= 0) /*\
error or EOF */

These may seem vial, but in larger programs it isndlways obvious that the mgroccurrences of some
magic number are (or are not) related. #define’ing these numbers also makes changing them fairly easy.

Use #define to ge rumbers explanatory names.

On the other hand, grabbing a random #delirsginbol that happens to ¥ the right value, and
using it, is no betterin particular,stdio.h's BUFSIZ is often used incorrectly to mean “a bunch of charac-
ters’. This practice originates on Version 7, where BUFSIZ was 512, wen@nt size for holding strings,
names, etc. But this is unportable, since setd® implementation might use 48 as it BSIZ. Betterto
use a name such as MAXSTR for maximum string length, and use wauwriteria for what reasonable.

December 30, 1992

-15-

As an eercise, consider what the value for MAXSTR should k100 enough? 2567 512%ow
can you preent overrunning strings, no matter twabig you male them? Remembehat users are cread
and somebody will find a way to try to exceed wheatgou specify Remember that some machines still
have limited memory so you cant make your strings 5120 bytes each. Think abstrncmp(3); is its
design useful here?

1.4.2. _dopnt considered unportable

Berkeley in 42BSD documented thiaternal stdio interface_doprnt. This was a mistak Other
stdio implementations often do not contain doprnt or anything lile it. The Berkeleycurseshas used
_doprnt for a long time, een before 4.2BSD:

/*

* This routine actually>ecutes the printf and adds it to the window
*

* This is really a modified version of "sprintf". As such,

* it assumes that sprintf interfaces with the other printf functions
*in a certain way If this is not ha your system works, you

*will have o modify this routine to use the interface that your

* " sprintf* uses.

*/
_sprintw(win, fmt, args)
WINDOW *win;
char *fmt;
int *args; {
FILE junk;
char f[512];
junk._flag = _IOWH + 10STRG;
junk._ptr = buf;
junk._cnt = 32767,
_doprnt(fmt, args, &junk);
putc(\0’, &junk);
return waddstr(win, buf);
}

This is coded as if it were internal $tdio, yet it is not. The design error is infefing to provide an inter

face with a variable number of arguments, something which may be unimplementable on some machines
and which on others is only expressed portably uswayargs.h>. A better design would ka keen to

take a $ngle string as an argument rather thariatf format and ayjuments. Thealler should format the
arguments into a characteunfter first usingsprintf and pass the address of thdfér to this function.Sys-

tem V Release 2 includesprintf() in its stdio, but this is far from standard yet.

No after version is offered,
since the design is fatally flawed.

Don’'t assume that you can write functions thaietakariable number of guments. Ifyou must do so, use
<varargs.h>.

Avoid variable number of arguments in functions.

December 30, 1992

-16 -

1.4.3. Neste@rguments vs checking

It's dl too common to see a line of nested function callee main problem is that it discourages
proper checking of system function return calls. This codentéilom net.sources in early 1985, is typical:

/* Blast into a users terminal. Great fun, \
and sometimes useful. */

#include<sgtty.h>
#include<stdio.h>
#include<sys/file.h>

int errno;

main(argc,argv)
int argc;
char *argv([];
{
errmno = 0;
if (argc != 2) fprintf(stderr,"blast: need\
tty number (only).\n");
else blast(open(argv[1],0_RDWR,0666));

}
blast(fd)
register FILE *fd;
{
char c;
if (errno) return;
ioctl(fd, TIOCNXCL,0); /* turn off exclusive use */
while ((c=getchar()) != EOF) ioctl(fd, TIOCSTI,&c);
}

Notice that the error message (‘need tty number only’) and the open call do not agree; the open seems to
want /dev/ttyNN. Butthe open itself is not checked. Or is ibtice the obscure line ‘errno = 0’; the sub-
program checks this and returns silently if errno !=0. Programssthiailently on error conditions can be
frustrating to use, and can almostals be impreed upon with little work.

But thats rot all. Note the declarations in the function. The variable ‘fd’ is returned by open(2), so
it's a fie descriptor (int). But i8 declared in the subprogram as FILE *staio stream pointer But it's
usedin the subprogram as a file descriptor again.

Here’s how some of the code might look:

December 30, 1992

-17 -

/*
* blast - blast text into userterminal input buffer (4.2 only)
*/

#include <sgtty.h>
#include <stdio.h>
#include <sysf/file.h>

void error();

main(argc,argv)

int amgc;
char *agvf];
{
int myfile;
if (argc 1= 2) {
(void) fprintf(stderr,"usage: blast /dev/ttyname\n™);
exit(1);
}

if ((myfile = open(argv[1], O_RDWR, 0666)) < 0)
error("cant open terminal %s", argv[1]);
else
blast(myfile);
close(myfile);
exit(0);
}

There may be other problems in the subprobgramy;dteeleft as anxercise for the reader.

1.5. Coding
Coding errors and omissions are last, but not least, on our list of suggestedemgmnts.

1.5.1. isasciithe forgotten macro

When we mued our PDP-11/70 from PWB 1.0 toe¥sion 7, some of our users had become depen-
dant on the RJE software to access an attaches glacessor (an IBM 3033)We had to provide support
for this access, so we put up the System Il RJE soéw Monthdater we put upsendmail and had a
month of intermittent looping sendmails (we spdk ech other about ‘harpooning sendwhales’ at the
time).

Programmers often seem wase that most of the macros defined in <ctype.h> are only defined for
arguments which are ASCII character4.2BSD’s sendmail sometimes uses these macros without first
checking that the characters being tested @@ #eSCIl characters, vigsascii. As a esult, gving send-
mail an address containing a character with the 0200 bit set will cause it to loop.

if (isspace(*s))
S++;

This attempts to skip spacesitlwill do undefined things if *s ishan ASCII characterpossibly including
referencing outside allocated memasrich may produce a core dump.

The System 1ll RJE had aip which occasionally produced trash in the name field, which it passed
to mail by theexec system call parameter list, and causing the sendmail loops which weezbserwe
sendmail didrt' properly validate its input. Clearly a case of USG and Bleykcode attacking each other!

Heres how this code should be done:

December 30, 1992

-18 -

if (isascii(*s) && isspace(*s))
S++;

This will stop skipping whitespace upon encountering a non-ASCII character.

Use isascii before other ctype.h macros

Maybe the <ctype.h> macros should do thafidation. Thg probably should, but tlyedon't. If you are
writing for UNIX rather than some hypothetical future system, you need taseatii() if you want
portable code.

1.5.2. scankometimes stops scanning too soon

Programmers sometimes fail to test that scanf scanned asitmas as theexpected. Thideaves
the remaining variables pointed to by scarfguments containing their previous contents, often trash if
the variables are uninitialise® news 210.1 contained such a bug in rfuncs.c, as showmbelo

while (fgets(buf, sizeof buf, af)) {
sscanf(buf, "%s %ld", n, &s);
if (strcmp(n, ng) == 0) {
This code will lese garbage inn at end of file and irs at end of file or if the second item lnf isn’t
numeric.

while (fgets(buf, sizeof buf, af) != NULL)
if (sscanf(buf, "%s %Id", n, &s) == 2 &&
strcmp(n, ng) == 0) {

This will only attempt to use (and laters) if sscanfactually scanned twitems.

Expect scanf to stop scanning ingemiently soon

2. “Code it now, we'll fix it later”

Careful coding takes longet.ike careful flying, on the part of the airline captains who will fly most
of you home from this conference. Bothed&nger but both gve you a warm feeling.

‘Later’ never comes.

In a ‘pressure-cooker’ environment there is a strong teryderiget the thing out the door’ without
concern for software qualityl perceve tis as a general failing of North American management; there is
almost ®erywhere a pressure to provide thgpeaance of poductivity regardless of true costs and long-
range effectieness.

The only answer to this is to fight bottom line with bottom liffeyou add up the costs of one pro-
grammesyear for each majagNIX shop, to include the time spent porting ‘portable’ code, you wil tza
starting point for the real cost&\dd in all the in-the-field debugging, including costs of debugging which
are transferred to the end-user by shipping undebugged code, you'll be onayoudom't forget to trans-
late customer debugging time into customer dissatiin. Myfirst guess at a coarsion factor is

One unhapyp customer == Ten lost sales

If you find your management pushing to you to ‘code,riix later’, just remind them that ‘later’ wer
comes.

December 30, 1992

-19 -

“ Our competitors’ code is done more carefully than mine.
| guesstheir bottom line extends to the horizdn.

3. Conclusion

We an't close without citing tw good guys. Despite its plethora of bugs andciggt(1)-output-
like configuration file,sendmailis careful about returning mail thabwld otherwise fall on the floofThe
Honey Danber version afiucp is good in the same wagnd may be better coded — we’llieao se.

A second, smaller-scale winner is the mukiykdatabase (MDBM) posted to the net in mid- to late
1984. W huilt an entire password database structure on top of this package, and used genstutient
ervironment (seeral thousands of studentsep half a dozenUNIX systems) W ran across one obscure
bug, but since the autho€hris Torek, had taken the trouble to check fampossible’ errors, we got the
message “MDBM BUG.". i nstead of a scrambled eggs database. Thanks.

Just to sum up, weé pesented some guidelines for good programming andrstiaw they can
reduce bgs. Reducinfpugs means reducing costs.

Some of these guidelines are so well-known that #ne almost truisms; manof them appear in
your fortune file when you log in. Others are our owwéntion or are paraphrases of originals.

But guidelines are guidelines, andyttaee useful only if thg are put to work in day-to-day program-
ming. Thats where you come in.

4. RecommendedReading

For a view similar to ours, see Kernighan and Plaugheflire Elements of Bgramming Style(2nd
Edition, McGraw-Hill, 1978) and th8oftwae Tools books (by the same authors, Addison-Wesley).

For a countenailing view, see some (a lot?) of the code which appears in the USEN&3gneup
net.sources

Acknowledgement

Thanks to Bruce Freeman for assisting with some ofxtamples. Oupositions at the Urersity of
Toronto hae dforded us the opportunity to peruse a tremendous amount of questionableerdte past
‘N’ years.

Thanks to Laura Creighton for readingyeal revisions of the manuscript with a critical eye.

Program fragments listed herein areyrgght © by AT&T, The Regents of the Urarsity of Califor
nia, and other interested parti€ublic Domain code is by the USENET News Project,eMilewton, and

others. Thestory of theUNIX and the Emveeous was inspired by Doug MgisoThe UNIX and the
Echo’, of which our tale is but a pale echo.

The template file/lusr/pub/template.cwas adapted by Henry Spencer from the example in the
getopt(3) manual page while he was writing the public-domain implementatiga@pt; the version pre-
sented here has been extedsi hacked wer, 0 Henry should not be blamed for its present state.

Some of the ‘mottos’ used are excerpted ffbme Elements of Bgramming Style(see under ‘Rec-
ommended Reading’).

Most of the paper was typed by one or another of the autfread ‘we’ for ‘I', and ‘I’ for ‘we’,
throughout.

Mark Horton provided useful feedback on the paper after the presentation at Dallas; some of his sug-
gestions are incorporated into the present version.

December 30, 1992

