A Cache to Bash for 9P

Geoff Collyer

Bell Laboratories
Murray Hill, New Jersey 07974
geoff@plan9.bell-labs.com

Charles Forsyth

Vita Nuova
www.vitanuova.com
forsyth@vitanuova.com

ABSTRACT

We needed to reduce the load on the file server shared by thousands of
nodes in a Blue Gene Plan 9 cluster. Plan 9 had two existing caching
mechanisms for 9P file servers: a volatile cache controlled by devmnt,
and a persistent disk-based cache managed by the user-level server cfs.
Both sent the server all 9P requests except reads satisfied by the cache.
Cfs was quickly converted to a ramcfs that used the large memory of a
Blue Gene 1/0 node instead of a disk, but most 9P traffic still passed
through. A redesign produced fscfs, which breaks the direct link between
its client’s 9P transactions and those it makes to the server, producing a
dramatic reduction in traffic seen by the server.

Introduction

As part of a project!:2 exploring alternatives in distributed systems infrastructure on
ultrascale platforms, we ported Plan 9 from Bell Labs3 to several models of IBM’s Blue
Gene system. Blue Gene* comprises up to 65,536 compute nodes and 1,024 1/0 nodes,
which are partitioned into processing sets (or psets). Each pset has an I/O node provid-
ing system services to up to 64 compute nodes. Only the I/0O nodes are connected to an
external Ethernet. Each node on the Blue Gene/P model has 4 PowerPC processors.
Nodes have no permanent storage except a tiny NVRAM. All storage for programs and
files is provided by external file servers, accessed by the 1/O nodes via Ethernet, and
accessible to the CPU nodes only via a specialised network connecting them to the 1/0
nodes. In our experimental environment, we run Plan 9 throughout, with different con-
figuration and initialisation for CPU nodes and I/O nodes.

Lacking a native Plan 9 file server at the Blue Gene site, we serve files from a Linux
server running hosted Inferno.> All nodes boot with a built-in file system pagfs(4),
which has a limited set of files for bootstrap. Each 1/O node imported a full file system
from the Inferno service on Linux, bound it into a more elaborate name space used by
our model for distributed computation,® and made that composite name space available
to its CPU nodes using exportfs(4). Consequently every non-local file access performed

at a CPU node was forwarded by the I/O node to the file server.

It was obvious that having all nodes ultimately send all file service requests directly or
indirectly to a single Plan 9 file server would be slow, but we wanted to focus on devel-
oping our model of computation, before worrying about making it efficient. Unfortu-
nately, as we ran experiments on even modest configurations, it became clear that the
naive structure led to failures, and an unusable system. In particular, the Linux server
ran out of file descriptors with only a few hundred nodes, but to be fair even a native file
server would run short of some resource eventually. To compensate, we could the repli-
cate the file system across many servers, but all the requests — and the data — would
still traverse the same network.

A reasonable alternative structure that would scale with the number of nodes arranges
the nodes into a tree. We can avoid transmitting redundant copies of the data by intro-
ducing caching into the tree.” We can further avoid needless duplication of file system
operations across all nodes by caching the results of a given set of operations for later
use if that set recurs.

Underlying assumptions and requirements

Plan 9 is running on many thousands of nodes, supporting a few scientific computing
programs for a given run. The programs are typically a few megabytes, and increasingly
require a collection of supporting system files, not just Plan 9 executables, but the
libraries for scripting languages such as Perl or Python. Such shared files are read, not
usually written; files that are written are unlikely to be shared concurrently. Write
requests are uncommon. Big data files consumed or produced by the application are
managed by another service, for instance through channels provided by the clustering
software.® During both initialisation and subsequent phase changes of an application,
system call traces show that similar sets of commands and file accesses are executed on
all CPU nodes, sometimes at nearly the same time.

Although initially we would build the caching structure explicitly, the design should
allow extension to support a truly hierarchical cache, perhaps using some ideas from
Envoy.”’

9P

First, a quick review of relevant aspects of the 9P protocol. A file server in Plan 9 is any
program that implements the server side of the file service protocol, 9P.8 A 9P client
sends a request to a 9P server and receives a reply. A 9P server is passive: it generates
no message except in response to an explicit request from the client. Each request has
a tag that numbers the request, an integer type that denotes the desired operation, and
a set of parameter values for the operation. Parameters can be integers, strings, byte
arrays, and structured values such as Qid and Dir. The position and type of each param-
eter is completely determined by the operation type. There are no variants. Replies
have a similar structure. The reply to a request has a tag equal to the tag of the
request, a type derived from the request type, and a set of results that depends on that
type. Alternatively, a server can respond to any request with an error message. (Tags
allow the server to satisfy 1/O requests out of order, although that does not happen
here.)

Authentication data is carried as opaque data exchanged using Tread and Rread
requests through a special fid established by a Tauth request. Thus, only the end-
points need to know the formats and content of the authentication data.

Because the message formats are simple and completely defined, and authentication
data is handled cleanly, one can easily write a variety of services that act as intermedi-
aries to 9P conversations. In particular, a caching service can simply interpose itself on
a 9P connection. The design of any 9P caching service is driven by considering the
desired response to the requests in the protocol, in much the way that a compiler
design is driven by the abstract syntax of its language. They are listed in Table 1.

f'version tag msize version start a new session g
Urauth tag afid uname aname optionally authenticate subsequent attaches U
DTattach tag fid afid uname aname attach to the root of a file tree .
STwalk tag fid newfid nwname nwname*wname walk up or down in the file tree 0
[Topen tag fid mode open a file (directory) checking permissions [
f'create tag fid name perm mode create a new file 0
Urread tag fid offset count read data from an open file g
DTwrite tag fid offset count data write data to an open file o

. .) . a
Srclunk tag fid discard a file tree reference (ie, close) 0
fremove tag fid remove a file 0
r'stat tag fid retrieve a file’s attributes g
Urwstat tag fid stat set a file’s attributes U
%Tflush tag oldtag flush pending requests (eg, on interrupt) H

Table 1 9P requests

Existing caching support

Plan 9 has long included the cache file system cfs, a user-level file server interposed on
the connection between a Plan 9 client and a remote file server. It caches file data on a
local disk, to reduce latency. It intercepts all 9P exchanges on the connection. Most
messages are sent on unchanged, but it adds any file data it sees to the cache, and sat-
isfies file reads from the cache if possible. The cache is write-through, so the cached
data is never more recent than the server’s. Files and file data are both kept on a least-
recently-used basis, up to the size of the disk partition allocated to the cache. Cfs uses
the Qid value returned by each open to detect and discard out-of-date cached data.
The cache persists on a disk partition between boots, but because the cache is write-
through it can simply be reformatted if invalid.

In the Fourth Edition, Plan 9 acquired an optional kernel-level cache. It is an optional
kernel component, and must be explicitly enabled by the MCACHE option of the mount
system call. If present and enabled, it will cache data from files served by that mount.
Unlike cfs, the cache resides in physical memory pages, and the cache is lost on reboot.
Otherwise it is similar: client reads are satisfied from the cache if possible; data
exchanged with the server through read and write will be added to the cache; files and
data are managed least-recently-used; and out-of-date cache entries are detected
using the Qid value returned by open. The cache pages are only briefly mapped into
the kernel address space when accessed, reducing the pressure on the kernel address
space, and only a limited amount of data per file can be cached, to help constrain the
physical memory dedicated to the cache.

Ramcfs

Ramcfs was the first attempt at mitigating the problem. It was created by changing a
copy of cfs to use a region of memory as its cache rather than a region of disk. Unlike
cfs, ramcfs initialises the cache each time it starts, since there is no persistent storage.
We added a —r option that declares that all the files are unchanging (readonly) and thus
may be cached more aggressively. On boot, each 10 node would first insert ramcfs on
its connection to the central file server. Thus, the subsequent access by the I/O node’s
CPU nodes would pass through the cache on the I/O node.

Ramcfs had its own disadvantages. It always reserved a big chunk of memory, to make
a virtual block device. Since the cache runs on |I/O nodes not CPU nodes, that does not
limit the memory available to a computation, but it was still a bit of a hack. More seri-
ously, because ramcfs was based on cfs it also forwarded all requests involving meta-
data to the remote server.

Fscfs

Existing components were inadequate, so we implemented a new one, fscfs that not
only caches data, but reduces the number of operations seen by the file server. Like cfs
and ramcfs, it acts as a write-through cache for data, but when many processes are
making identical file system requests over time, it effectively aggregates them into sin-
gle requests at the server. This has a dramatic effect. Table 2 shows statistics mea-
sured at a single 10 node. (The values on the other IO nodes in the run were similar.)
The interval is from the initial connection to the file server up to the point where the
CPU nodes had started all their network services and were ready for duty. The table
gives the number of various file system operations seen by the IO node, as produced by
its 64 CPU node clients, and the number of operations it had to send on to the server.
The final row shows the number of bytes read by all clients, and the number of bytes
read from the server and cached at the 10 node to satisfy the client read requests. The
difference is dramatic. The reduction in load seen by the server will also be magnified
by the addition of each new 10 node and its cluster.

O Op 10 node Server O
E’.%version 1 1 g
attach 1 1
‘Twalk 7,855 56
nlfopen 1,486 77 O
(Tread 6,823 133 0
(I'clunk 4,749 oO
(Tstat 4,224 4,224 0
O 0
bytes read 19,913,992 462,722 1

Table 2 Statistics from fscfs on an 10 node with 64 CPU nodes.

Design and implementation

To provide data caching, fscfs uses the same strategy as the existing caches: it makes a
copy of data as it passes through in either direction, and stores it in a local cache. Sub-
sequent Tread requests for the same data will be satisfied from the cache. Twrite
requests are passed through to the server, replacing data in the cache if successful.
Cached data is associated with each active file, but the memory it occupies is managed

on a least-recently-used basis across the whole set of files. When a specified threshold
for the cache has been reached, the oldest cached data is discarded.

Unlike the existing caches, however, fscfs handles more 9P requests itself without dele-
gating them to the server. Those requests include Twalk, Topen, Tstat and
Tclunk.

To do that required two significant changes from previous schemes. We explain them
by reference to several internal data types, shown concisely below:

Fid :: fid: u32int qid: Qid path: Path opened: SFid mode: (R | W | RW)

SFid :: fid: u32int

Path :: name: string qid: Qid parent: Path kids: set of Path (Valid | Invalid)
Valid :: sfid: SFid file: optional File

Invalid :: reason: string

File :: open: array of SFid dir: Dir clength: u64int cached: sparse array of Data

First, fscfs separates its client from the server, by managing two sets of fids. One set is
allocated by its client, as before; those are seen only by fscfs, which remembers them in
values of the Fid type. The other set of fids is allocated and controlled by fscfs; only
those fids are seen by the server. It records them in SFid values. Second, using the dis-
tinction between fid sets, fscfs caches the results of walks and opens. The distinction
allows a cached fid (known to the server) to outlive a fid allocated by the client. It also
allows several client fids to share a single server fid. That alone reduces the resource
requirements at the server as the number of client references grows.

From each Tattach referring to a file server’s tree, fscfs grows a Path tree represent-
ing all the paths walked in that tree, successfully or unsuccessfully. A successful walk
results in an end-point that records the SFid referring to that point in the server’s hier-
archy. (Note that intermediate names need not have server fids.) If a walk from a given
point failed at some stage, that is noted by a special Path value at that point in the tree,
which gives the error string explaining why the walk failed. If a subsequent Twalk
from the client retraces an existing Path, fscfs can send the appropriate response itself,
including failures and walks that were only partially successful. If names remain in the
walk request after traversing the existing Path, fscfs allocates a new SFid for the new
Path end-point, sends the whole request to the server, and updates the Path appropri-
ately from the server’s response. Remembering failures is a great help when, for
instance, many processes on many nodes are enumerating possible names for different
possible versions of (say) Python library files or shared libraries, most of which do not
exist. (It would be more rational to change the software not to do pointless searches,
but it is not always possible to change components from standard distributions.)

When a file or directory has been opened, the corresponding Path will have a File struc-
ture that has the SFid(s) for each mode (read, write, read/write) with which a client has
opened the file, the currently known file length, and any data cached for that file. The
File’s SFid is distinct from that in the Path because the latter might later be walked else-
where, and it is illegal to walk an open fid. Furthermore, files can anyway be opened
simultaneously with different modes, each needing a distinct fid on the server to carry
the correct mode. Files in Plan 9 can also be opened ‘remove-on-close’ (ORCLOSE). As
a special case, the client Fid for such a file will be given its own unique SFid on open, to
ensure that the timing of the remove remains the same from the client’s point of view.
The file will be removed when that particular client closes it.

Some requests update the file system: Twrite, Tcreate, Topen (with OTRUNC),
Twstat, and Tremove. Those are delegated to the server, and on success the local
state is updated to match. In other words, the Path and File caches are write-through.
For instance, a successful Twrite request will add the data written to the cache. A
successful Tcreate will extend the current Path tree, possibly replacing a previous
Invalid entry for the newly-created name, and then open a new SFid for the file. A more
subtle case is Tremove, which always frees any existing sfid for the file, as required by
remove(5), but only on success does it mark the file as removed in the Path tree and dis-
card any cached data.

Fscfs always delegates operations on certain types or classes of files to the server,
specifically authentication files, append-only, and exclusive-use files. Currently it also
delegates Topen and Tread for directories, because read(5) does not allow a seek in a
directory except to the start. We are currently changing the software to cache the whole
directory on the first read, so that directory reading does not provoke excessive load on
the file server. The reader might have noticed that Tstat was also not handled locally
when the measurements in Table 2 were made.

Discussion and further work

There is no great mystery about implementing a cache for a file system, whether directly
in a kernel, as with the UNIX buffer cache, or by intercepting a file service protocol, as
with NFS or 9P. Even so, there are typically some subtle points.

Fscfs is just over 2,000 lines of C code, including some intended for future use. It has
more than satisfied our initial requirements, although much more can be done. It aggre-
gates common operations in a general but straightforward way. Its Path cache is similar
to Matuszek’s file handle cache in his NFS cache,® and closer to 9P home, some of the
subtle cases in fid handling in fscfs seem to turn up in the implementation of 9P in the
Linux kernel, where Linux lacks anything corresponding exactly to a fid.!0

Currently, as is true in our environment, fscfs assumes that the client requests always
represent the same user. Removing that assumption requires growing separate Path
trees from distinct Tauth and Tattach instances, to ensure that errors (eg, ‘permis-
sion denied’) are reported in the correct context. Instead of having a Path refer directly
to a File, the Path would record only the Qid, and the File would be found in a Qid to File
map, to ensure cached data is correctly shared and updated.

More interesting additions would be to make our file system access fault-tolerant and
more efficient. Given the structured nature of our target networks and systems, one
attractive approach is to use a variant of random trees, which could also provide load
spreading.!!

References

1. Ronald G Minnich, Matthew] Sottile, Sung-Eun Choi, Erik Hendriks, Jim McKie,
“Right-weight kernels: an off-the-shelf alternative to custom light-weight kernels,”
ACM SIGOPS Operating Systems Review 40(2), pp. 22-28 (April 2006).

2. Ron Minnich, Jim McKie, Charles Forsyth, Latchesar lonkov, Andrey Mirtchovski, Eric
Van Hensbergen, Volker Strumper, Rightweight Kernels,
http://www.cs.unm.edu/~fastos/07meeting/usenix-june2007.pdf.

3. Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard
Trickey, Phil Winterbottom, “‘Plan 9 from Bell Labs,”” Computing Systems 8(3), pp. 221-

254 (Summer 1995).

4. A Gara, M A Blumrich, D Chen, G L-T Chiu, P Coteus, M E Giampapa, R A Haring, P
Heidelberger, D Hoenicke, G V Kopcsay, T A Liebsch, M Ohmacht, B D Steinmacher-
Burow, T Takken, P Vranas, ‘“Overview of the Blue Gene/L system architecture,” IBM
Journal of Research and Development 49(2-3), pp. 195-212 (2005).

5. The Inferno Programmer’s Manual, Vita Nuova Holdings Limited (2000).

6. Eric Van Hensbergen, Noah Paul Evans, Phillip Stanley-Marbell, ‘A unified execution
model for cloud computing,” ACM SIGOPS Operating Systems Review 44(2), pp. 12-17
(April 2010).

7. R G Ross, “Cluster storage for commodity computation,”” UCAM-CL-TR-690, Univer-
sity of Cambridge Computer Laboratory (June 2007).

8. C H Forsyth, “The Ubiquitous file Server in Plan 9,”” Proceedings of the Libre Software
Meeting, Dijon, France (2005).

9. Stephen Matuszek, Effectiveness of an NFS cache,
http://matuszek.net/development/distributed/nfscache/index.html.

10. Eric Van Hensbergen, Ron Minnich, “Grave Robbers from Outer Space: Using
9P2000 Under Linux,” Proceedings of the USENIX 2005 Annual Technical Conference,
FREENIX Track, pp. 83-94, USENIX (2005).

11. David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, Daniel
Lewin, “Consistent hashing and random trees: distributed caching protocols for reliev-
ing hot spots on the World Wide Web,”” Proceedings of the twenty—ninth annual ACM
symposium on Theory of Computing, El Paso, Texas, pp. 654-663 (1997).

