
A History of UNIX before Berkeley: UNIX Evolution, 1975–1984

Copyright 1984
Ian F. Darwin

Darwin Open Systems

Geoffrey Collyer

University of Toronto*

ABSTRACT

This article traces some of the intermediate history of the UNIX Operating System,
from the mid nineteen-seventies to the early eighties. It is slightly updated from an arti-
cle that appeared as ‘‘The Evolution of UNIX from 1974 to the Present, Part 1’’ in
Microsystems [Darw1984a]. It was intended as part 1 of 3; unfortunately that issue was
also the last issue of Microsystems. This article discusses ‘‘Research UNIX’’: V6, V7 and
V8; and tells the tale of many programs and subsystems that are today part of 4BSD, Sys-
tem V or both. Subsequent articles were planned to discuss in more detail the history of
Berkeley UNIX, System V, and commercialised UNIXes. We have not written those other
articles; this article is being submitted to DaemonNews in hopes that those who have
written other histories of other parts of UNIX’s history will come forward.

1. Introduction

Nobody needs to be told that UNIX is popular today. In this article we will show you a little of where
it was yesterday and over the past decade. And, without meaning in the least to minimise the incredible
contributions of Ken Thompson and Dennis Ritchie, we will bring to light many of the others who worked
on early UNIX versions, and try to show where some of the key ideas came from, and how they got into the
UNIX of today.

Our title says we are talking about UNIX evolution. Evolution means different things to different
people. We use the term loosely, to describe the change over time among the many different UNIX variants
in use both inside and outside Bell Labs. Ideas, code, and useful programs seem to have made their way
back and forth – like mutant genes – among all the many UNIXes living in the phone company over the
decade in question.

Part One looks at some of the major components of the current UNIX system – the text-formatting
tools, the compilers and program development tools, and so on. Most of the work described in Part One
took place at ‘‘Research’’, a part of Bell Laboratories (once Bell Telephone Laboratories, then AT&T Bell
Laboratories, now a part of Lucent Technologies; then as now ‘‘the Labs’’) located primarily at Murray
Hill, NJ and Holmdel, NJ, and the ancestral home of UNIX. In planned (but not written) later parts, we
would have looked at some of the myriad versions of UNIX – there are far more than one might suspect.
This includes a look at Columbus, PWB (Programmer’s Workbench) and USG (UNIX Support Group)
UNIXes and at U. C. Berkeley (BSD) UNIXes: CBUNIX, PWB/UNIX, UNIX/TS, and BSD UNIX respec-
tively. We use the term ‘USG UNIX’ somewhat loosely in this paper to refer to PWB and USG UNIXes and
System III and System V, since these (especially later System V) are the merger of the major internal (to
the Bell System) variants of UNIX and ‘USG’ has long been the designator for these systems outside of the

* now with Bell Laboratories, Murray Hill, New Jersey 07974, a part of Lucent Technologies

- 2 -

Bell System, probably in part due to #ifdef USG in source code from these systems. You’ll begin to get
a glimpse inside the history of the UNIXverse.

2. Basic Sources

Since we can’t say everything about UNIX in this article, we’ll give some pointers for those who want
to read more. Full acknowledgements will be found at the tail end of each installment. But some basic
sources must be mentioned.

It is a truism that the final source of information about UNIX is UNIX itself. And this, of course,
requires that you have a source license. And to get a source license, you must sign in blood that you will
not divulge the source code of UNIX in any way, shape or form. So, in preparing this article, we have
stayed clear of looking at source code. But there are times when you want to do so, not so much to find out
how some feature evolved as to see how it really works. (Since this was written in 1984, the famed Lions
book [Lion1977a] exegesis of the UNIX kernel has been published openly. We are saddened to note the
passing of John Lions in late 1998. And, of course, the source code of the three free Berkeley UNIX deriva-
tives is readily available.)

The UNIX Manuals are a prime source of information about UNIX. It’s trendy to deride the UNIX
manuals, but for their intended purpose and audience the Bell Laboratories man pages generally exemplify
good technical writing: concise, accurate, and to the point. The Programmer’s Manual or User’s Manual
as it is variously called, more colloquially known as ‘‘Volume 1’’, summarises in a standard format each
command, system call, library function, and many special files (in the technical sense!), system file for-
mats, games, miscellany, and maintenance information. Comparing a series of manuals of different vin-
tages offers the student of UNIX evolution a good view on changing conditions.

Volume Two of the Manual set (beginning with PWB and V7; before that it all fit in one binder) is a
series of short papers. These range from notes on installing the system to reference manuals on compilers
to introductory tutorials. These, too, are typically well-written but occasionally incomplete. They are con-
cise and to the point; some people find this obscure. Remember the audience and the background. The
papers are written for the benefit of someone with the source code and with some knowledge of the system.
It was always assumed that you would have somebody around to help you – a wizard. Or you would go to
the conferences and ask others about problems. A careful reading of the manuals was (and is) required to
become a wizard, along with hands-on time spent using (and eventually modifying) the system, learning by
doing.

These papers, and others written at Research, established an interesting tradition, so counter to main-
stream computerdom: You write the program, you write the documentation. (Later examples of this include
the Literate Programming project and the Java language document generator javadoc.) In almost every
case, the authors of the program are the authors of the paper describing its details. And in almost every
case, acknowledgement is made to those who contributed significant ideas, advice or moral support to the
project. This, of course, has made our work in this paper easier. It also speaks volumes about management
and about programmers – both those programmers who write effective summaries of their programs, and
those who don’t condescend to do so.

And the UNIX manuals are sometimes derided for the ‘‘BUGS’’ section. This is the place where the
author(s) of a program list its design limitations. One UNIX critic said of this policy: ‘‘If they know about
the bugs, why don’t they fix them?’’ The point is that the early UNIX authors established the beneficial
habit of documenting limits to the program, rather than always letting the end user find them. Dennis
Ritchie comments: ‘‘Every other manual has bugs sections; they just aren’t published.’’ Many of the
BUGS sections were intended as pointers for further development of the programs, rather than as warnings
to the user. Ritchie adds: ‘‘Our habit of trying to document bugs and limitations visibly was enormously
useful to the system. As we put out each edition, the presence of these sections shamed us into fixing innu-
merable things rather than exhibiting them in public. I remember clearly adding or editing many of these
sections, then saying to myself "I can’t write this," and fixing the code instead.’’ [Ritchie, personal corre-
spondence]

After the manuals, another important series of papers in a similar vein appeared in the Bell System
Technical Journal, July-August 1978. This special issue – part 2 of the July-August 1978 issue [1978a] – is

- 3 -

often referred to as ‘‘the blue book’’ for its blue binding (though all issues of the BSTJ from this time
period were blue). The magazine is now called Bell Labs Technical Journal and did another special issue
on UNIX in October, 1984 [1984a]. This issue is must reading for the serious UNIXophile.

Many of the technical reports from Research are published as Computing Science Technical Reports
(CSTRs); those still in print are available from Bell Labs and some of them can be found on the World-
Wide Web, at http://www.cs.bell-labs.com/cm/cs/cstr.html currently.

Brian Kernighan has co-written several books containing interesting historical details. We quote
later from Software Tools [Kern1976a], a book he wrote with P. J. Plauger, and The UNIX Programming
Environment [Kern1984a] written with Rob Pike.

Finally, access to a nearly-complete collection of back issues of ;login:, the journal of the USENIX
Association, has been invaluable.

The only way to keep abreast of ongoing development work in the UNIX community is to attend, or
at least read the proceedings of, the USENIX meetings held twice a year. Everyone doing serious technical
work presents it here. Other conferences are more introductory or marketing-oriented.

3. Text Processing Tools

One of the guiding lights of the UNIX utilities or software tools has been the deeply-felt conviction
that text should be stored in as simple, as general a format as possible so that any program can easily pro-
cess it. This idea (sometimes attributed to the late Joseph Ossanna; see below) has had the widest impact
possible on UNIX in all its varieties. However, there has been a regrettable tendency to move away from it
in recent times, especially among commercial software developers.

We have rather arbitrarily divided the software tools into text processing tools and program develop-
ment tools. Remember that UNIX makes no distinction between text files, program files and data files.
Many of the same techniques can be applied to all three. But more on this later. First, an outline of the
major tools and their development.

3.1. An old editor made new

The original standard UNIX line-mode text editor ed has a lineage longer than many of us do. As
early as 1969, the first assembly-language version of ed was in place. Although later rewritten in C, the
editor is fundamentally the same program as used then. As Kernighan and Plauger wrote in 1976,

The earliest traceable version of the editor presented here is TECO, written for the first PDP-1
timesharing system at MIT. It was subsequently implemented on the SDS-940 as the ‘‘quick
editor’’ QED by L. P. Deutsch and B. W. Lampson; see ‘‘An online editor,’’, CACM Decem-
ber, 1967 [Deut1967a]. K. L. Thompson adapted QED for CTSS on the IBM 7090 at MIT, and
later D. M. Ritchie wrote a version for the GE-635 (now HIS-6070) at Bell Labs.

The latest version is ed, a simplified form of QED for the PDP-11, written by Ritchie and Thompson.
Our editor closely resembles ed, at least in outward appearance. [Software Tools, page 217]

[‘CACM’ is the Communications of the Association for Computing Machinery.]

This is not to say that ed is the same as the TECO found on some DEC computers. For one thing,
TECO is character-oriented while ed is line-oriented. It seems rather a case of ‘‘common ancestry.’’

During the 1970’s, the editor went through countless revisions. Nearly every university had its own
modified versions of ed and qed; some had several modified versions. Jay Michlin of Bell Labs wrote (in
IBM assembler) a QED for IBM’s mainframe TSO; this was released to Universities in the mid-70’s. This
was, in fact, one of my (Darwin) earlier exposures to the UNIX philosophy; around 1975, I heard about a
‘‘spiffy new editor’’ for TSO (the IBM mainframe Time Sharing Option), so ordered and installed it on the
TSO system at the University of Toronto. And, of course, ed would visit Berkeley and, while there, mutate
into ex and vi.

Did this wide variety of editor versions lead to massive confusion? Not really. For although most of
the editors added new commands and features, they seldom deleted them. The result was that you could –
and this is still true – learn a basic set of ed commands and special characters usable on every version.

- 4 -

Today the Seventh Edition, 4.?BSD and System III/V versions of ed are all sufficiently similar that
one can move freely amongst them with only minor inconvenience. The manual pages for every current
version of ed are all recognizably derived from the Sixth Edition document. System III/V extends the ‘u’
(undo) command, but most of the other commands are constant. If you’ve used ed, you’ve used an editor
with a long history, and probably a long future.

3.2. roff

Having a good text editor is only half the text processing battle. Having entered your text, you still
must format it neatly for presentation. That’s the function of a text-formatting program. The earliest UNIX
formatter known to man is roff, a line-command formatter. Like ed, roff is part of a large and diverse fam-
ily, one that includes the runoff package found on Digital Equipment computers (the latest release is called
DSR, for DEC Standard Runoff). The earliest Runoff program is attributed by Kernighan and Plauger to J.
Saltzer, who wrote it for CTSS. Runoff also is an ancestor of the Script programs available on IBM main-
frame systems; that descent would be equally interesting for IBMers to trace (no doubt we’ll get letters
from those with information to SHARE with us).

Roff was written by M. D. McIlroy, at Research. Like ed, roff was well in place by the First Edition
of UNIX. It was considered static by the time of the Sixth Edition, regarded as obsolescent by the time of
the Seventh, and dropped altogether by the time of System III.

3.3. nroff and troff – The assembler of text

Computerists are never satisfied. So after roff came ‘‘New Roff’’, or nroff, written by the late Joseph
Ossanna, who throughout his career was concerned with improving the way text was handled. Ossanna’s
nroff, as Kernighan and Pike relate,

‘‘was much more ambitious [than roff]. Rather than trying to provide every style of document
that users might ever want, Ossanna made nroff programmable, so that many formatting tasks
were handled by programming in the nroff language.

‘‘When a small typesetter was acquired in 1973, nroff was extended to handle the multiple sizes and
fonts and the richer character set that the typesetter provided. The new program was called troff
(which by analogy to ‘‘en-roff’’ is pronounced ‘‘tee-roff’’). nroff and troff are basically the same
program...’’ with divergent processing appropriate to the differences in output device. [UNIX Pro-
gramming Environment page 289]

They point out that troff is tremendously flexible, and indeed many computer books have been type-
set using it. But it can be complex to use. As a result, most everyone uses one or another ‘‘macro pack-
age’’ – a series of pre-programmed commands – and optionally one of the preprocessors (such as eqn, tbl,
refer, and more recently pic, grap and ideal). Troff was originally written in assembler, but was redone in
C in 1975. Joseph Ossanna wrote both versions and maintained it until his death in 1977.

3.4. Macro Packages

The earliest macro package to come into wide use was ‘‘ms’’, for ‘‘manuscript’’ [Lesk1977a]. Writ-
ten by Mike Lesk, the ms macros provide a powerful but easy-to-learn (by comparison with bare nroff)
approach to document formatting. The ms macros were distributed with the Sixth and Seventh Edition
UNIX and most subsequent releases. The package was picked up and extended at Berkeley.

The USG versions of UNIX include a macro package called ‘mm’, for ‘‘memorandum
macros’’ [Dolo1978a]. These do most of the same things as ms, in slightly different ways, with the addi-
tion of numbered lists and a few other bells and whistles, but are about half again as big as ms. The startup
time is such with mm that USG in 1979 had to resort to a compacted form of the macro packages; this made
it into System III.

There are two versions of the ‘man’ macro package used to format the manual pages in Volume 1 of
the UNIX Manual Set. One was used on V6, and the other from V7 on. If you see a manual page beginning
with ‘.th’ instead of ‘.TH’, it’s from V6. System III has an (undocumented) command mancvt, and 4.1BSD
had trman, to convert files from the old to the new format.

- 5 -

There is also the ‘mv’ macros for producing viewgraph or slide presentations. This is a USG prod-
uct, and versions of the USG manuals from PWB 1 up to just before System III carried the now-famous
line:

The PWB/UNIX document entitled: PWB/UNIX View Graph and Slide Macros is not yet
available.

System III manuals appeared with scarcely a mention of mv, and (finally) it was documented with the
System V manuals.

3.5. tbl, eqn, refer

One view of troff is as an assembler language for text processing. If this be true, then eqn, tbl, refer
and later preprocessors are the high-level compilers that go with it.

Mathematics has always been an inconvenience to traditional typesetting. This observation led Brian
Kernighan and Lorinda Cherry to develop eqn for UNIX, and would later lead Donald Knuth to write his
TeX typesetting package with math capabilities built in.

The eqn program reads an entire nroff/troff input file and passes it unchanged except for ‘‘equation
specifications’’ delimited by .EQ and .EN requests (or pairs of delimiter characters for in-line equations).
Material inside these requests is used to construct equations of considerable complexity from simple input.
English words such as ‘sum’, ‘x sub i’, and ’infinity’ produce the expected results (a large Sigma, x with a
subscript i, and the infinity symbol respectively). In most cases no typesetter wizardry is required. A list of
some forty extra character definitions lives in the file /usr/pub/eqnchar; these can be copied, extended, or
altered by the knowledgeable user.

Eqn was written by Brian Kernighan and Lorinda Cherry. The ‘‘new graphic symbols’’ in
/usr/pub/eqnchar are the work of Carmela L’Hommedieu (formerly Scrocca) at Bell Labs. The first public
write-up of eqn appears to be a paper by Kernighan and Cherry in the CACM, March 1975 [Kern1975a].
The software was included in the Sixth Edition UNIX.

Like eqn, tbl is a preprocessor that passes over a formatter input file looking for special requests (here
.TS and .TE) [Lesk1976a]. The material between these requests is expected to be a series of special com-
mands to tbl and some tabular data. To greatly over-simplify how this program works, tbl replaces tab
characters with explicit horizontal and vertical moves to make the rows and columns in the table align
exactly under control of the table specification. It is invaluable for putting tabular material of any kind into
documents.

Mike Lesk wrote tbl at Research; the idea for it came from an earlier table formatting program by J.
F. Gimpel. Tbl first appeared outside the Labs with the V6 release of UNIX. It appeared in its present form
on the ‘‘Phototypesetter Version 7’’ (interim V7) and PWB tapes, in Seventh Edition UNIX distributions,
and in all systems since then.

Lesk also wrote refer [Lesk1978a], a bibliographic citation and reference package, which first
appeared in V7. Regrettably, not all UNIX distributions picked it up (like Lesk’s tbl, refer contained many
bugs, some of which manifested as core dumps on various architectures; that probably didn’t help, though
there have also been strong rumours that AT&T didn’t want to distribute any form of software incorporat-
ing indices, notably the V7 dbm library, in order to leave a market for third-party data base companies). It
incorporates knowledge of how to format citations and can produce from an approximate citation a footnote
(or reference) mark and a formal citation as a footnote or reference at the end. Once you build up (or copy)
a large collection of references, this is very handy. If your system doesn’t come with refer, grefer can be
found in the groff distribution.

3.6. Typesetter Independent troff

New! Improved! Yet again! That’s right. troff is infinitely perfectible. In 1979, Brian Kernighan at
Research set out to re-write troff. Rather than rewrite it completely and be incompatible with the tens or
hundreds of thousands of documents in existence, he chose to ‘‘clean up’’ troff. It turned out to be rather
more akin to cleaning the Augean Stables than he had imagined, but resolve did not desert Kernighan.
Finally he emerged with a tape for the Typesetter-Independent (later dubbed ‘‘Device-Independent’’, to

- 6 -

avoid a sexually-charged acronym) troff [Kern1982a], along with revised tbl/eqn/refer and two new prepro-
cessors, pic and Chris Van Wyk’s ideal [Kern1981a]. The new ditroff produced output that is readable
ASCII containing a low-level description of the commands needed to drive a typesetter; this ‘intermediate
language’ is fed to a particular postprocessor to generate the particular commands needed to drive a typeset-
ter. Pic (as the name implies) does pictures. It is useful for drawing ‘‘flow-chart’’-like drawings, but there
is much more to it than that. Ideal also draws pictures, but is somewhat more mathematical in usage than is
pic.

This set of products formed the basis of the commercialised ‘‘Documentor’s Workbench’’ package
from AT&T. And work continues, of course. Kernighan has been working on cleaning up the appearance
of eqn output. Recently, Kernighan and John Bentley have written grap, a graph plotting preprocessor for
pic. The program was released with Release 2 of Documentor’s WorkBench, released in early 1986. A
report on grap is also available from Bell Laboratories as a CSTR [Bent1984a].

3.7. Troff in the outside world

Several Universities have further developed troff. Since these are changing all the time, it is not fea-
sible to mention them all here. A future issue of the USENIX journal ;login: will contain a summary of
this work.

Many companies picked up the commercial (binary sublicense) release of Documentor’s WorkBench.
As a result one can now purchase this product in binary-only form for most any UNIX computer. Most of
these ‘‘troff houses’’ have added postprocessors for specific output devices; few have made substantial
change to the main program. One of the authors (Darwin) was employed at SoftQuad in the mid-1980’s,
then believed to be the only company doing serious development on troff internals (AT&T had no develop-
ers assigned to the product). SoftQuad had drastically changed the intermediate language devised by Ker-
nighan. It is now more readable and more amenable to additional processing with the UNIX software tools
than is the standard ditroff. Most troff houses support the common output devices (in 1986 this means the
Apple LaserWriter and other PostScript printers, Imagen imPRESS printers, the Hewlett-Packard
LaserJet, and other devices; by the mid 1990’s it means PostScript and HP).

A few attempts have been made to port Documentor’s WorkBench to non-UNIX environments. Both
SoftQuad and Elan Systems have an MS-DOS port of complete DWB. Other companies (including Image
Network) have ported the product to Digital Equipment’s VMS system. But the main usage of troff contin-
ues to be on UNIX.

Because troff required a commercial license, it had to be cloned for free UNIX. The groff formatter
suite used on most free BSD systems was cloned by James Clark in the 1980’s from UNIX troff, with ideas
from SoftQuad and other extended versions of troff.

3.8. Of Mice and Blits

Tired of typing at a dull, boring 24×80 screen, Rob Pike and Bart Locanthi had a better idea. Inte-
grating the ideas of the Alto project and related work at Xerox PARC (Palo Alto Research Centre) with the
UNIX approach to things, they built a special terminal called the Blit [Pike1985a, Pike1984a, Carg1984a]
(not an acronym) with a Motorola 68000 processor, high-resolution screen, good keyboard, a fabulous
mouse, and software split between the host and the terminal. Their particular combination of these ingredi-
ents makes possible a form of interaction with the computer that was years ahead of its time. Pike, in addi-
tion to being a radical advocate of the UNIX approach to software development, is quite visionary. Some of
his work was described at recent (1980’s) USENIX conferences. And large parts of the audience didn’t
seem to grasp the essentials of what he is saying. Some of the same ideas are of course found in other bit-
mapped screen environments, such as the SUN workstation and The X Window System, in somewhat dif-
ferent forms.

Blits were available only inside AT&T, mostly in Bell Labs, although a few have been released to
selected Universities. The Blit has been commercialised by AT&T/Teletype, and was sold (with a different
microprocessor) as the AT&T DMD 5620 terminal.

(More recently, much of this work has been consolidated into an operating system called Plan 9 From
Bell Laboratories.) [Pike1990a, Pike1995a]

- 7 -

3.9. Style, Diction, Writer’s Workbench

One of the authors (Darwin) has long been interested in the computerised processing of text, a term I
take to mean more than is commonly included as ‘‘word processing.’’ So I was quite interested to read a
paper by L. E. McMahon, Lorinda L. Cherry and R. Morris entitled ‘‘Statistical Text Processing’’ in the
1978 special BSTJ issue on UNIX [McMa1978a]. I would later use several of the techniques mentioned in
the paper.

At the end of the paper, Ms. Cherry describes a program parts for finding parts of speech in English
text. This was written to be the first pass of a system to add inflection to the speak program written by
Doug McIlroy, but the person doing the stress part left the company. Ms. Cherry wasn’t interested in the
stress assignment, so she documented the work done so far and went on to other things.

In the spring of 1979, W. Vesterman of Rutgers approached Doug McIlroy at Research about com-
puterizing one of the techniques Vesterman used in teaching writing. The students had to count surface fea-
tures in their text and in a sample of text written by a professional writer. That summer, Ms. Cherry
expanded parts considerably, and added the code that turned it into style, a program to analyse the readabil-
ity and other characteristics of a textual document. She also developed diction to check for awkward word
uses, overused words, and other problems facing everyone who composes text for others to read. She also
modified deroff to find the real text in a document. Vesterman consulted on this work.

And when the 4.1BSD release of the system came out, I was pleasantly surprised to see that style and
diction were present [Cher1981a]. Bell Labs has a policy of sometimes releasing software to educational
institutions; this probably explains the release at Berkeley.

While this was going on, the Human Factors group at Piscataway (now at Summit) was getting inter-
ested in automating document review, and Nina Macdonald of that group called Ms. Cherry about using
parts. She had worked at Murray Hill in a Linguistics group and was familiar with the program. Ms. Mac-
donald took style and diction, and WWB evolved from there. Writer’s Workbench (WWB) consists of
style, diction and a dozen or so related programs for finding problems in written work. The ‘‘chattiness’’
level of the programs is set for the beginning user, but can easily be adjusted by the advanced user. The
ideas for this work came from the Piscataway group, the Murray Hill group, and from Colorado State Uni-
versity, where extensive use of the Writer’s Workbench (described at USENIX, Toronto, July 1983) cur-
rently puts several thousand undergraduates on WWB each year. The use of WWB is perceived to improve
significantly the students’ writing skills.

Many writers will be thankful to all who contributed, because these programs have proven them-
selves useful many times over. If buying a 4.1 or 4.2BSD system, insist on style and diction. If you get a
System V UNIX, consider getting the WWB add-on if you’ll be doing any document preparation. Writer’s
Workbench is one product that should survive and prosper as UNIX continues to evolve. The next major
release of WWB (3.0) was scheduled for the spring of 1985.

4. Compilers, Languages, Tools

What is an operating system without languages and utilities? Despite the limited support for FOR-
TRAN, UNIX has always been known for the diversity of languages and tools provided. Some of these are
well-known, others are less-well-known than perhaps they ought to be.

4.1. The C Programming Language

The early evolution of the C language has been described elsewhere (see Dennis Ritchie’s paper in
Microsystems, October, 1983. Dennis is rather modest, and doesn’t tell you that the UNIX world has named
the C compiler described there ‘‘the Ritchie compiler’’ to distinguish it from other C translators). As we
pick up the threads of the story, Fifth Edition UNIX has been in the field for some time. It is May, 1975,
and the new improved Sixth Edition [Thom1975a] is about to be released. Ritchie has added some support
for a new data type, ‘‘long integers’’ referred to with the keyword long, but this will not be documented.
Not all the runtime support has been installed, and the tape goes out without it. Later Ken Thompson will
announce that the support for ‘longs’, limited though it be, was there all along in V6. There is no support
for ‘‘short integers’’, or ‘‘shorts’’.

There follows a succession of releases of the C compiler. The PWB 1.0 release of UNIX, the first

- 8 -

outside the labs of a non-Research UNIX from Bell, goes out in 1977. And a special-release tape known
only as ‘‘Phototypesetter Version 7’’ includes a new release of troff as well as the C compiler, assembler,
loader, archiver and bits of the C library, including the first release of ‘stdio’. These compilers seem to be
from about the same vintage. Both compilers support another new data type modifier, unsigned, which
causes all bits of an integer to be treated as magnitude (on the PDP-11, for example, signed ints run from
-32,768 to +32,767 while unsigned ints are from 0 to 65,535). These compilers add typedefs,
which allow you to generate your own names for existing data types, for a degree of independence from the
machine data types. One of these compilers is somewhat buggy – the concept of ‘‘cast’’ is in the code but
doesn’t work properly. Bit fields exist but are buggy; this is documented. The Phototypesetter Version 7
was primarily a release of troff; the compiler was included because it was necessary for troff (very conve-
nient, since Research wanted to get the latest C out into the field anyway).

In 1978, The C Programming Language is published [Kern1978a] and serves as the standard for the
C language for over a decade, until the ANSI C standard [Amer1989a, ISO1990a] appears, at long last, in
December 1989.

Finally the Seventh Edition of UNIX [Thom1978a], the first portable UNIX, is released in June or July
of 1979 and announced at the Summer USENIX conference in Toronto, along with 32V (the DEC VAX
port of V7 that all later VAX implementations derive from, including 3BSD, 4BSD, System III and System
V). This is the last Research UNIX that the outside world, with the exception of a few academic institu-
tions, will ever see, though there will be three more editions (V8 through V10, all for the VAX) [Pres1986a,
Pres1985a, Labo1986a, Comp1990a] incorporating interesting ideas before Plan 9 takes over as the operat-
ing system under active development by Research in the early 1990’s. Many aficionados today regard V7
as the pinnacle of UNIX; superior to all its ancestors and descendants. There is some truth in this, though
V7 lacked several things that later became important: interactive networking (though uucp provides batch
networking), a network filesystem, and bitmapped graphics. These will be added in V8 in superior form to
anything seen outside AT&T until Plan 9. The networking infrastructure will seep out in heavily-modified
form as System V STREAMS (a heavy-weight form of Research Streams). The graphics will become
available in the AT&T DMD 5620 terminal described above, which is unfortunately much more expensive
than competing terminals and PCs, but nevertheless develops a cult following.

Of course, V7 has another C compiler. This one, for the most part, is a ‘‘shaken down’’ version of
the ‘‘Phototypesetter C’’ compiler. It is a lot more solid, although bit fields are still broken and now the
bug is not documented. And there is a special kludge for uucp whereby casting an expression involving a
character pointer to type unsigned treats the character referenced by the pointer as an ‘unsigned charac-
ter’, a concept not yet in the compiler or language. (It will later appear as the type unsigned char.)
This kludge will be quietly withdrawn later. The compiler has a bug in that it treats the right, not the left,
side of an assignment as the value of the assignment expression. The V7 stdio exploits these two bugs,
thereby making it non-portable. The semantics of casts will remain unsettled until slightly after V7.

Along with the Ritchie C compiler, V7 of UNIX includes the first release outside Bell Labs of a sec-
ond C compiler, bearing the impressive name of the ‘‘Portable C compiler.’’ [John1978a] Written by S. C.
Johnson, this compiler has been in development since 1975 and uses the program development tools yacc
but not lex. (A part of the yacc grammar for this compiler was published in the C manual with PWB in
1977.)

The portable C compiler turns out to be not as portable as desired, so a second version is developed
over the next few years, called pcc2. At the ACM National Conference in 1983, Steve Johnson describes
pcc2 in some detail, and shows an example of its portability. Of the many ‘‘back ends’’ (assembler or
machine code generators) for it, one compiles a C language algorithm into the commands necessary to drive
a VLSI fabrication process. So your program (if you work in the right part of the Labs!) can be compiled
into a custom microprocessor, optimised to execute your program and nothing else! That sure out-classes
the EPROM versions of Intel and Motorola microprocessors. pcc2 has only recently been released; it is the
C compiler for System V Release 2 (?) and the Software Generation System cross-compiler. Later ver-
sions of the C compiler are described in a paper [Kris1986a] by David M. Kristol of AT&T.

One immediate beneficiary of the two-pass nature of pcc was the Fortran compiler, to which we will
return shortly. But a second major fallout from pcc is a program called lint, which does partial compilation
of C programs with much greater error checking. Like pcc, lint first appears with V7. We continue to

- 9 -

recommend the use of lint to provide some reassurance of program correctness and portability.

Berkeley has taken the C language in some new directions. They have relaxed some restrictions on
compiled programs. Most notably, variables can be almost any length and need not be unique in the first
seven or eight characters. While this sounds handy, it is a major annoyance to the rest of the world, which
has to change programs written with such ‘features’ in order even to compile them. Berkeley programmers
also tend to rely to an unprecedented extent on the ‘asm’ keyword, which allows you to interpolate assem-
bler language code into the middle of the C program. ‘asm’ buys an increase in micro-efficiency but with a
tremendous loss of portability. To preserve portability, the programmer should use #ifdef to include in
the source code both an assembler version and a portable C version. But the latter is often omitted. A fine
example was shown in a talk by Mike Tilson, then of Toronto’s Human Computing Resources (reprinted in
the November, 1984 final issue of Microsystems) [Tils1983a]. Here’s the code:

to = bp->b_ptr;
asm("movc3 r8,(r11),(r7)");
bp->b_ptr += put;

What it does is left as an exercise to the reader. The writer of this code left no clues to how his mayhem
works. As Mike says: ‘‘The variable ‘‘to’’ is one of the registers used in this VAX assembly instruction.
You guess which.’’ Oh, we almost forgot. The three lines above are Copyright 1980 by the Regents of
the University of California.

Meanwhile, back at Research, B. Stroustrup has been busy adding ‘‘classes’’ to C [Stro1981a].
Classes (nothing to do with going back to school) are the interesting part of Simula 67. They provide for
orderly interchange of data between modules, with no possibility of hidden dependencies. A class consists
of data (normally inaccessible from outside the class) and functions which are normally accessible from
outside but which may be declared as inaccessible. One typically defines a class and publishes the names
of the accessible functions. Functions outside the class cannot reference the data within that class except by
calling the class’s publicly-accessible functions. This enforces modularity by hiding the details of a partic-
ular class’s internals from other routines. Classes can be nested, of course, so you can develop such things
as queues and stacks of objects. The compiler encompassing all recent developments, including classes,
declaration of function parameters for type checking, and other recent developments is given the name
‘‘C++’’ [Stro1984a, Stro1984b]. C programmers will recognize the pun; for others, it simply means ‘‘an
incremented (augmented?) form of the C language, which retains the value of the old language’’. C++ has
been in use for some time within the Labs, and was recently (1985) released for external sale. [C++ hasn’t
worked out as well as we’d hoped in 1984 [Stro1989a]. If the differences between Algol 60 and Simula 67,
edited with taste to remove complexity such as the built-in text class, had been added to C, the result might
have been an interesting language (C+=simula-algol60 rather than C++), but C++ is now too big,
redundant and confused for our tastes. Luckily the ANSI C++ committee has put something of a brake on
further bloat (though failed ideas from languages like Lisp have been tossed in), but it’s too late already.
Java is in a sense a reaction to C++: a distilled C++ without concern for C compatibility.]

In addition to a C compiler, one needs a series of library routines to do Input/Output and some
‘extra-linguistic’ operations such as setexit()/reset() in V6 or setjmp()/longjmp() in V7.
The first ‘portable C library’ [Lesk1975a] was written by Mike Lesk, and was implemented on PDP-11
UNIX, the IBM 370, and the Honeywell 6000 with the GCOS operating system. It set the style for subse-
quent development, and in Version 7 there was a ‘‘new portable I/O library’’ [Kern1979a] written by
Ritchie. This has become known as ‘‘stdio’’ (pronounced ‘‘stuh-DYE-oh’’) for the name of its header file.
This is the I/O library distributed with all real UNIXes today.

The current C compilers for the PDP-11 continue to derive from the Ritchie versions. Pcc for the
PDP-11 never worked as well as the Ritchie compiler. Most other machines use pcc-based C translators
since the Ritchie compiler only works for PDP-11’s (though Amdahl bravely ported it to the IBM 370 for
their UTS [Wals1982a] UNIX port). Many systems integrators wait earnestly for the release of pcc2 since
porting pcc takes a non-trivial amount of work.

The future of the C language is not primarily in the hands of people like Dennis Ritchie and Steve
Johnson and B. Stroustrup. Rather, it is in the hands of the ANSI C Language standards committee. But in
the final sense, it is in the hands of programmers everywhere. Partly because ANSI is a democratic agency,

- 10 -

and any member of the committee has as much voice as a Dennis Ritchie or a Steve Johnson. And also
because C is a powerful language, and like all powerful tools it can be used or abused. This is not the place
for a tutorial on C style, but the interested reader can refer to the paper by Tilson cited above and our own
USENIX paper [Darw1985a]. Good use of C leads to rapid development of high-level code; poor use of the
language leads to code that looks like it was written in assembler. As we have seen, in a few cases it has
been.

4.2. fortran

Since UNIX comes from a Computer Science research background, it is perhaps natural that Fortran,
that octogenarian, reptilian but ubiquitous language should be the object of some disdain among UNIXo-
philes. Indeed, the V6 how to get started document says that ‘‘No debugger is much help for Fortran.’’
And the Sixth Edition manual set included the C Reference and the C Tutorial, but nothing on Fortran
proper beyond the manual page for fc(1), a compiler for a slight variant of the ANSI Fortran-66 standard.
(But see the discussion of Ratfor below.)

fc produced executable programs that used threaded code and floating-point instructions heavily; thus
it ran slowly on machines without a floating-point processor, on which floating point had to be interpreted.

The prime mover behind the next Fortran compiler was Stuart Feldman, who had been interested in
compilers for some time. In 1976 he released a CSTR on ‘‘Fortlex – A General Purpose Lexical Analyzer
for Fortran.’’ This program [Feld1976a] reads a Fortran program and breaks it up into lexical tokens of the
appropriate type, a non-trivial job. Fortlex was used in the construction of various Fortran programming
aids, such as a program to change all double precision variables, functions and library calls to single preci-
sion. The paper also includes the yacc grammar for a Fortran scanner to be used with Fortlex; not a com-
plete compiler, but possibly a basis for one.

And the Fortran weakness of UNIX was remedied with a vengeance for the Seventh Edition. A com-
piler for the full ANSI Fortran-77 standard was included, apparently the first implementation of the 1977
standard on any system anywhere, along with a paper detailing its use and implementation. The back-end
of this compiler was the same back end as the Portable C Compiler, so that it would be easy to adapt to new
computers.

Although the Fortran compiler is part of all standard UNIX systems, most suppliers of 68000-based
UNIX boxes do not include f77. Whether this is so they can charge extra for it, or because they couldn’t fig-
ure out how to port it, is unclear. But commercial implementations are available for most micro-based
UNIXes.

4.3. yacc+lex

One of the major tools used in compiler development is the yacc (yet another compiler
compiler) [John1975a] program by Steve Johnson. When this program was developed in the early 1970’s,
compiler generators were being generated by many universities and other research institutes. As Kernighan
and Pike remark, Johnson’s choice of name for his program is ironic in that his has endured while most of
the others have now been retired.

yacc reads in the specification of a language, and generates a program which parses that language.
Note that this is not limited to ‘‘programming languages’’, but can be applied to any input that is structured.
In addition to the nrws nroff-to-Wordstar program used to translate some articles for Microsystems, many
applications are mentioned in the yacc paper. That manual mentions ‘‘compilers for C, APL, Pascal, RAT-
FOR, etc, ..., a phototypesetter system, several desk calculators, a document retrieval system, and a Fortran
debugging system’’ as programs which have been written in yacc. More recently, Cobol and Ada compil-
ers have been constructed.

But syntax analysis is only one part of compilation. Another part is lexical analysis, or scanning of
the input looking for certain kinds of tokens. For this, too, UNIX has an answer. The lex program by Mike
Lesk and E. Schmidt [Lesk1975b] provides this function. Since it is part of the UNIX tradition, of course,
lex uses many of the same conventions. In particular, lex uses the same notation for ‘‘regular expressions’’
as is used in the editors and elsewhere to describe the patterns to be looked for. If you’ve mastered com-
mands like /[hH]e/ in the editor, you already know how to construct expressions for lex. And of course

- 11 -

it works with yacc. The naming conventions of these two programs are such that the output of both can be
loaded together to form a working unit. Indeed many programs consist of yacc and lex outputs compiled
and loaded together.

Yacc was present in Version 6 (the manual page is dated late 1974); lex first appeared outside the labs
in the PWB 1.0 release.

4.4. make

It’s hard to imagine UNIX without the make utility [Feld1979a]. Make is so taken for granted these
days that the distribution of software in source form without a makefile is an event worthy of attention and
inquiry. But there was a time when the name of the file with the instructions to build a system were chosen
at random from the names ‘‘build’’, ‘‘rc’’, ‘‘run’’, ‘‘runfile’’ and others. And these were shell files which
built the entire component.

Make builds a program or component from individual pieces, and recompiles only the minimum
needed to rebuild it as changes are made. The edit-make-debug cycle is well known to all UNIX program-
mers. Since the topic has been treated in detail in The UNIX File by one of us, we will not expand on it
here. Suffice to say that make was written by Stuart Feldman at Research, and first appeared outside Bell in
the PWB release of the system. The sketchiness of the Source Code Control System user interface, its
slowness, and its incompatibility with most of UNIX including make led not to the correction of SCCS, but
to an ‘‘enhanced’’ make which appears publicly in System III and System V, and to superior revision con-
trol systems such as RCS and CVS. (Variants of make proliferated, culminating much later in mk by
Andrew Hume [Hume1987a] and mash for Inferno by Bruce Ellis.)

4.5. ratfor, efl

Brian Kernighan at Research realized that Fortran would not go away, so he did something about it.
He fixed it. He fixed it by adding the control structures of C and the definition and inclusion capabilities of
the C preprocessor. The converter which takes in ‘‘rationalised Fortran’’ and produces ugly conventional
Fortran he called ‘‘Ratfor’’ [Kern1977a]. Several versions were written; one in Ratfor (translated by hand
or machine into Fortran) for bootstrapping onto other systems, another with yacc and lex as mentioned
above. The meaning of Ratfor is best told in the book Software Tools co-written with P. J. Plauger. The
source code for the programs in the book was made available on magnetic tape by Addison-Wesley, in a
move that was very far-sighted for 1976. This lead to the formation of the Software Tools User Group at
Lawrence Berkeley Labs in Berkeley; this group was quite active and co-sponsored meetings with
USENIX.

The Software Tools book would later be re-done in Pascal (see ‘Pascal’ section). There are no plans
announced for doing a ‘‘Software Tools in C’’ book; most of what you need is in Kernighan’s & Pike’s
book The UNIX Programming Environment.

After the Fortran-77 compiler, Stuart Feldman turned his attention to Fortran extensions, and pro-
duced the efl language [Feld1979b]. This combines the control structures of ratfor (which in turn derive
from C) with the data structuring capabilities of C including the struct capability to group related data
items, analogous to Pascal’s record capability. efl is included in some System V and some 4.?BSD sys-
tems. Some microcomputer ports (i.e., UniSoft) include efl even though they don’t have a Fortran com-
piler.

4.6. awk

Aho, Weinberger, and Kernighan. The names of three authors put together in the most pronounce-
able way. That’s what they did when they couldn’t think of a more imaginative name for a wonderful pro-
gram they’d devised. A is Al Aho, of compiler book fame. W is Peter Weinberger of Research. And K is
Brian Kernighan, just described for his work on Ratfor. (Kernighan and Pike’s book remarks that ‘‘Naming
a language after its authors also shows a certain poverty of imagination.’’ [page 131]) Awk is not at all
awk-ward, it is a great simplification. You can think of it as the combination of most of the best ideas of
the other tools all rolled into one [Aho1978a]. We use it all the time. You can enter the awk commands
from the command line if they are simple enough, so that

- 12 -

awk -F: ’{print $1}’ /etc/passwd

is a complete program to print the names of all the accounts shown in /etc/passwd, the standard place for
the names of all accounts on the system. By all means learn about awk and use it. It will make life far less
awk-ward.

Awk was first described in Software Practice and Experience in July, 1978, and first distributed with
Seventh Edition UNIX.

4.7. Pascal

The Pascal language never did catch on at Research. In 1981, Brian Kernighan wrote a paper pub-
lished as a CSTR entitled ‘‘Why Pascal is not my Favorite Programming Language.’’ [Kern1981b] The
note was not based solely on introspection, for he and P. J. Plauger had just converted their book Software
Tools into Software Tools in Pascal, including re-coding all the programs in Pascal. In the process they
came to regard Pascal as their not favorite language.

Berkeley UNIX has included Pascal for a long time. Ken Thompson wrote the first version of Berke-
ley Pascal while working at Berkeley as Visiting Mackay Lecturer in Computer Science in 1975/76. He
spent the academic year at UC Berkeley, and taught several courses in Computer Science. He recalls:

‘‘When I arrived, the CS department shared an 11/45 with Statistics. It was 50-50 UNIX and
RSTS. The first advance was an 11/70 dedicated to teaching. I put my first 155 [operating
systems] course on it. Between the first and second quarters I wrote the Berkeley Pascal and
talked Bob Fabry into using it on his 153 [data structures] class. It has been used for that ever
since. By the time I left, there were several (2 or 3) 11/70s in the computing center providing
UNIX service. CS had the 11/70 for teaching, they had almost completely taken over the stat
11/45 and there was a research 11/40’’ in an AI lab [Thompson, personal correspondence].

Pascal compilers can be had for most 68000-based UNIX boxes. These are available from commer-
cial software firms and OEMs – see the annual UNIX software directory in the April Microsystems.

4.8. S

Finally, we cannot overlook an interesting ‘‘application’’ language from Research. S: An Interactive
Environment for Data Analysis and Graphics. The title of the 1984 book by Richard A. Becker and John
M. Chambers puts it succinctly. And we put it as follows: The S package is to conventional mainframe
statistics packages as the UNIX shell is to batch Job Control languages. It provides interactive, exploratory
statistics, interactive and offline graphics, and data modelling and time series manipulation.

The S language was developed at Research. The first public release was in 1981, which was for V7
and 32V. There were several interim releases; the next major release was in early 1984. This release was
accompanied by a change in licensing and an order-of-magnitude cost increase for non-educational users, as
part of the swing to the commercialization of UNIX by AT&T Technologies.

The only remotely similar products that we know of in all of computerdom are APL and Speakeasy.
APL was first implemented on IBM systems; at least one version for UNIX was developed (Ken
Thompson’s for the PDP-11). Speakeasy similarly arose on IBM hardware; a subset version called
SpeakeC was developed at Purdue. Speakeasy was developed some time before S, but in quite different
circles of influence. There appears to be no cross-pollination between the two although many of the ideas
are similar. S uses yacc to interpret its grammar; the yacc specification appeared in a CACM paper in 1984.

5. Interlude

The Computing Science Research Center, Center 1127, at Bell Labs has had impact on computerdom
far out of proportion to the number of people working there. A small group of talented people, started in
motion by Ken Thompson and Dennis Ritchie with the original design of UNIX, aided and abetted by those
mentioned here and others, developed Research UNIX and its related tools. Many reasons are given for the
success of UNIX, but one we’d like to add is the consistency of the system in all its facets. As a single
example, the syntax used for pattern matching (a notation for the abstract concept of Regular Expressions)

- 13 -

allows you easily to develop tremendous skill in pattern matching. This skill once learned can be applied in
the editor to find text, in awk to find records to be acted on, in lex to specify partitioning of an input, (with
simple modification) in shell commands to match filenames, and in a dozen or so contexts. This kind of
consistency is a rare treat in any computer system; the extent to which it permeates UNIX is exemplary.

This concludes the first installment of our history of the natural creation of the UNIX timesharing sys-
tem. The next installment will cover the relationships among many, many different versions of UNIX, most
of them never released or publicised outside of Bell Labs and the telephone companies. There will be a
‘‘family tree’’ diagram illustrating the descent of UNIX. We hope you enjoyed this edition, and that you’ll
be looking forward to the next (assuming that somebody contributes it).

6. Acknowledgements

A myriad of UNIX experts helped with this paper. While it’s not possible to thank everyone who
offered to help, we should single out for special thanks Dennis Ritchie, who was there from the start and
helped us to find it. We also got special help from Ken Thompson, who answered many questions about
the past. Henry Spencer and Laura Creighton made useful comments on the work in progress. Lorinda
Cherry and Nina Macdonald helped by describing the evolution of Style, Diction and the Writer’s Work-
bench. While it’s not really possible for people outside ‘‘the Labs’’ to get an exact picture of UNIX history,
we have done our best, and assume responsibility for the accuracy of the material presented here.

7. References

1978a. Bell Sys. Tech. J., AT&T (July-August 1978). part 2

1984a. AT&T Bell Laboratories Tech. J., AT&T (October 1984).

Aho1978a. A. V. Aho, P. J. Weinberger, and B. W. Kernighan, ‘‘AWK — A Pattern Scanning and Pro-
cessing Language,’’ Software—Practice and Experience 9, pp. 267-280 (April 1979).

Amer1989a. American National Standards Institute, X3J11 committee, American National Standards Insti-
tute X3.159-1989 -- Programming Language C, = ISO/IEC 9899:1990, ANSI, New York (1989).

Bent1984a. Jon L. Bentley and Brian W. Kernighan, ‘‘GRAP — A Language for Typesetting Graphs
(Tutorial and User Manual),’’ Comp. Sci. Tech. Rep. No. 114 (August 1984).

Carg1984a. T.A. Cargill, ‘‘Debugging C programs with the Blit,’’ Bell Laboratories Technical Journal
63(8 (part 2)), pp. 1633-1647 (October 1984).

Cher1981a. L. L. Cherry, ‘‘Writing Tools — The STYLE & Diction Programs,’’ Comp. Sci. Tech. Rep.
No. 91 (February 1981).

Comp1990a. Computing Science Research Center, AT&T Bell Laboratories, Murray Hill, New Jersey,
UNIX Research System Programmer’s Manual, Tenth Edition, Saunders College Publishing (1990).

Darw1984a. Ian Darwin and Geoff Collyer, ‘‘The Evolution of UNIX – 1974 to the Present,’’ Microsys-
tems 5(11), pp. 44-56 (November 1984).

Darw1985a. Ian Darwin and Geoff Collyer, ‘‘Can’t Happen or /* NOTREACHED */ or Real Programs
Dump Core,’’ Proc. Winter Usenix Conf. Dallas 1985, pp. 136-151 (January 1985).

Deut1967a. L. P. Deutsch and B. W. Lampson, ‘‘An online editor,’’ Comm. Assoc. Comp. Mach. 10(12),
pp. 793-799, 803 (December 1967).

Dolo1978a. T. A. Dolotta, R. C. Haight, and J. R. Mashey, ‘‘UNIX Time-Sharing System: The
Programmer’s Workbench,’’ Bell Sys. Tech. J. 57(6), pp. 2177-2200 (1978).

Feld1976a. S. I. Feldman, ‘‘Fortlex — A General Purpose Lexical Analyzer for Fortran,’’ Comp. Sci.
Tech. Rep. No. 51 (October 1976).

Feld1979a. S. I. Feldman, ‘‘MAKE — A Program for Maintaining Computer Programs,’’ Software—
Practice and Experience 9, pp. 255-265 (April 1979).

Feld1979b. Stuart I. Feldman, ‘‘The Programming Language EFL,’’ Comp. Sci. Tech. Rep. No. 78 (June
1979).

- 14 -

Hume1987a. A. Hume, ‘‘Mk: A Successor to MAKE,’’ Comp. Sci. Tech. Rep. No. 141 (November 5,
1987).

ISO1990a. ISO, Programming Language C, International Standards Organization (ISO), revision and
redesignation of American National Standards Institute (ANSI) X3.159-1989, Amendment 1, ISO
(1990).

John1975a. S. C. Johnson, ‘‘Yacc — Yet Another Compiler-Compiler,’’ Comp. Sci. Tech. Rep. No. 32,
Bell Laboratories, Murray Hill, New Jersey (July 1975).

John1978a. S. C. Johnson, ‘‘A Portable Compiler: Theory and Practice,’’ Proc. 5th ACM Symp. on Princi-
ples of Programming Languages, pp. 97-104 (January 1978).

Kern1975a. B. W. Kernighan and L. L. Cherry, ‘‘A System for Typesetting Mathematics,’’ Comm. Assoc.
Comp. Mach. 18, pp. 151-157 (March 1975).

Kern1976a. Brian W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley (1976).

Kern1977a. B. W. Kernighan, ‘‘Ratfor — A Preprocessor for a Rational Fortran,’’ Software—Practice and
Experience 5, pp. 395-406 (October 1975).

Kern1978a. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, New Jersey (1978).

Kern1979a. Brian W. Kernighan and Dennis M. Ritchie, ‘‘UNIX Programming – Second Edition,’’ UNIX
Programmer’s Manual, Seventh Edition (January, 1979).

Kern1981a. B. W. Kernighan, ‘‘PIC — A Crude Graphics Language for Typesetting,’’ Comp. Sci. Tech.
Rep. No. 85 (January 1981).

Kern1981b. B. W. Kernighan, ‘‘Why Pascal is Not My Favorite Programming Language,’’ Comp. Sci.
Tech. Rep. No. 100 (July 1981).

Kern1982a. B. W. Kernighan, ‘‘A Typesetter-Independent TROFF,’’ Comp. Sci. Tech. Rep. No. 97 (1981,
revised March 1982).

Kern1984a. Brian W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice-Hall
(1984).

Kris1986a. David M. Kristol, ‘‘Four Generations of Portable C Compiler,’’ pp. 335-343 in USENIX Con-
ference Proceedings, USENIX, Atlanta, GA (Summer 1986).

Labo1986a. AT&T Bell Laboratories, in UNIX Programmer’s Manual, Ninth Edition, Volume One, ed. M.
D. McIlroy, Murray Hill, New Jersey (September 1986).

Lesk1975a. M. E. Lesk, ‘‘The Portable C Library (on UNIX),’’ UNIX Programmer’s Manual, Sixth Edition
(1975).

Lesk1975b. M. E. Lesk, ‘‘Lex — A Lexical Analyzer Generator,’’ Comp. Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975).

Lesk1976a. M. E. Lesk, ‘‘Tbl — A Program to Format Tables,’’ UNIX Programmer’s Manual 2, Section
10 (January 1979).

Lesk1977a. M. E. Lesk, Typing Documents on UNIX and GCOS: The -ms Macros for Troff, 1977.

Lesk1978a. M. E. Lesk, ‘‘Some Applications of Inverted Indexes on the UNIX System,’’ UNIX
Programmer’s Manual 2, Section 11 (January 1979).

Lion1977a. John Lions, Commentary on UNIX Sixth Edition, Peer-to-peer Communications (1977). The
famed underground classic exegesis of the workings of the kernel.

McMa1978a. L. E. McMahon, L. L. Cherry, and R. Morris, ‘‘UNIX Time-Sharing System: Statistical Text
Processing,’’ Bell Sys. Tech. J. 57(6), pp. 2137-2154 (1978).

Pike1984a. R. Pike, ‘‘The Blit: a multiplexed graphics terminal,’’ Bell Laboratories Technical Journal
63(8 (part 2)), pp. 1607-1631 (October 1984).

Pike1985a. Rob Pike, ‘‘The Blit Programmer’s Manual (TTY Edition),’’ Comp. Sci. Tech. Rep. No. 121
(October 1985).

- 15 -

Pike1990a. Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey, ‘‘Plan 9 from Bell Labs,’’
Proc. of the Summer 1990 UKUUG Conf., London, pp. 1-9 (July, 1990).

Pike1995a. R. Pike, D. L. Presotto, S. M. Dorward, B. Flandrena, K. Thompson, H. W. Trickey, and P.
Winterbottom, ‘‘Plan 9 from Bell Labs,’’ Computing Systems 8(3), pp. 221-254 (Summer 1995).

Pres1985a. D.L. Presotto and D.M. Ritchie, ‘‘Interprocess Communication in the Eighth Edition Unix Sys-
tem,’’ pp. 309-316 in USENIX Conference Proceedings, USENIX, Portland, OR (Summer 1985).

Pres1986a. D. L. Presotto, ‘‘The Eighth Edition Unix Connection Service,’’ European UNIX Systems User
Group Autumn Conference, Florence, Italy, pp. 1-9 (April 1986).

Stro1981a. B. Stroustrup, ‘‘Classes: An Abstract Data Type Facility for the C Language,’’ ACM Sigplan
Notices Jan. 1982 (Revised August 1981).

Stro1984a. Bjarne Stroustrup, ‘‘The C++ Programming Language — Reference Manual,’’ Comp. Sci.
Tech. Rep. No. 108 (January 1984).

Stro1984b. Bjarne Stroustrup, ‘‘A C++ Tutorial,’’ Comp. Sci. Tech. Rep. No. 113 (September 1984).

Stro1989a. B. Stroustrup, ‘‘The Evolution of C++: 1985 to 1989,’’ Comp. Sci. Tech. Rep. No. 144 (July
1989).

Thom1975a. K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories (May
1975). Sixth Edition

Thom1978a. K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories (1978).
Seventh Edition.

Tils1983a. Michael Tilson, ‘‘A Tutorial on C Portability,’’ pp. 315-323 in USENIX Conference Proceed-
ings, USENIX, San Diego, CA (Winter 1983).

Wals1982a. Daniel Walsh, ‘‘UTS: UNIX on the Amdahl 470,’’ pp. 210 in USENIX Conference Proceed-
ings, USENIX, Boston, MA (Summer 1982). Abstract only

