News Need Not Be Slow

Geoff Collyer

Department of Statistits
University of Toronto
utzoo!utcsrilutfraser!geoff

Henry Spencer

Zoology Computer Systems
University of Toronto
utzoo'henry

C news is a re-write, from scratch, of the ‘transport lagéthe Usenet software.
C mews runs at over 19 times the speed of B rnews; C expire runs in minutes rather than
the hours taken by B expire. These performance improvements were (mostly) quite sim-
ple and straightforward, and they exemplify general principles of performance tuning.

1. History and Motivation

In the beginning (of Usenet) (1979) was A news, written at Duke University by Steve Bellovin,
Stephen Daniel, Tom Truscott and othefssingle programnews, received, relayed, perused and cleaned
out news articles. All articles were stored in a singlex T directory which made A news suitable for local
news and low volumes of network news. News articles were exchanged using a simple message format in
which the first five lines of a message contained the information nowadays found in the article headers:
unique article-id, newsgroup(s), autharbject, date posted.

As Usenet began to grow (1981), people in and around the University of California at Berkeley
including Matt Glickman and Mark Horton, modified A news extensivélye articles of each newsgroup
were now stored in a separate directofile message format was changed from the rigid and inextensible
A news header format to one conforming to ARRFC 822 (the current ARPmail-message format stan-
dard). News was broken into separate programeadnews inews (akarnewsg, andexpire The authors
dubbed the result “B news’ Sincethe release of B news, it has replaced A news alevsrywhere on
Usenet.

* Work done mostly while at U of T Computing Services.
T UNIX is a registered trademark of AT&T.
T AT&T Bell Laboratories Research still runs A news for local newsgroups.

It soon became clear that sending individual articles from machine to machine as sapgyate
transactions was unacceptably slomwpart because it produced d@ruucp spool directories, which are
searched quite slowlyby the kernel. Sites began tbatch articles into batches of (typically)
50,000-100,000 bytes for transmission to other machines.

At about this time, B news was changed to file news articles in a tree, as (for example)
/usr/spool/news/net/iwomen/only/123, rather than as /usr/spool/news/net.women.only/123. The motive for
this was primarily elimination of problems with long newsgroup names, but shortening directories (and
thus speeding searches) was also a consideration.

As Usenet traffic continued to grow explosiveites began to use data compression on news
batches. Themain objective was to reduce expensive long-distance phone time, but again performance
improved a bit: the extra processor time used for compression and decompression was more than gained
back by the reduction in processor time usedump itself.

Unfortunately B news has been modified by many people since 1981, and has mutated repeatedly to
match the changing nature of Usenet. It has become complexastbdifficult to maintain.

During 1985, we observed that the nightly arrival of new news and expiry of old news were consum-
ing resources far out of proportion to the volume of data involvEstpire often ran for 90 minutes, and
rnews processing averaged 10 seconds or more per arBdéh programs tended to cripple systems by
performing much disk i/o and eating much system-mode CPU tishes was running B 2.10.1 news then
andutzoo was running B 2.10 newsAlthough newer B news releases were available, they offered little
beyond B 2.10, and it was often necessary to regression-test new B news releases to verify that reported,
published bug fixes had in fact been applied.

Spencer acted first and rewraepire from the ground up. Though it initially lacked any form of
selective expirythis expire, when run each night, finished in about 15 minutes. (This was on 750-class
machines holding all Usenet news and expiring after 14 days.)

Collyer observed in November 1985 thatriews, upon receiving a batch of news, immediately
exeed a trivial unbatcher which copied each article into a temporary file and then forkesemd B
rnews again.Such a technique is clearly overkill for articles averaging about 3,000 bytes Fatimi-
nary experiments failed to produce a modified B rnews that could unravel a batch without fGidarsgl-
tation with Rick Adams, the current B-news maintaimevealed that this same technique remained in the
upcoming B news release (variously B 2.10.3 or BR.1Mthin one week, a from-scratch Gnews proto-
type was working well enough to run experimentally on a "leefchine receiving a subset of news.

This prototype version lacked a good many necessary amenities, and over the next eight months it
was enhanced to bring it up to full functionalitit was also tuned heavily to improve its performance,
since it was faster thanmews but still not fast enough to make us happy.

Once thernews newsgroup name matching routines were working, Spencer rexxgae to add
selective expiryspecified in a control file Recently we have also revised our old batcher heagJdygely
to add capability but with an eye on performance.

2. Rnews Performance

The basic objective of C news was simpler code and higher performance. This may sound trite, but
note that performance was an explicit objective. That was imporRmgrams will seldom run faster
unless you caraout making them run faster.

* Recentuucps (hotably Honey DanBer) provide spool sub-directories, and recent 4BSD (4.3BSD and later) kernels provide linear
(as opposed to quadratic) directory searching, both of which help this problem.

T Never mind the cost/benefit ratio.

1 40 hours, Collyer didrt' have to work hard.

‘Faster’implies comparison to a slower versioinowing the value of improvements, and assessing
this in relation to their cost, requires knowing the performance of the unimproved version. Collyer kept
detailed records of his work omews, so he ould see how much progress he was making. See the
Appendix for the final resultTo know how to get somewhere, you must know ewrer ate darting from.

The first functional Gnewsran at about 3 times the speed afnBws. We had assumed that merely
eliminating the fork/exec on each article would give a factor of 10 improvement, so this was disappointing.
Awoiding obvious performance disasters helps... bsinit always enough.

Profiling, first withprof(1) and later with 4.2BSB’gprof(1), and rewriting of the bottlenecks thus
discovered, eventually brought the speed up to over 19 times the speedesiB This required a num-
ber of write-profile-study-rewrite cycles. There is undoubtedly still a lot of code which could be faster than
it is, but since profiling shows that it doeshave a significant impact on overall performance, who cares?
To locate performance problems, look through the eyes of thy profiler.

Collyer first experimented with usinmgad andwrite system calls instead éfead andfwrite, and
got a substantial savingthough the usage of system calls in this experiment was unportable, the saving
eventually lead him to rewriteead andfwrite from scratch to reduce the per-byte overheads. This helped
noticeably snce pre-System-VWread andfwrite are really quite indicient. If thy library function offends
thee, pluck it out and fix it.

At the time, Crnews was doing fairly fine-grain locking, essentially locking each file independently
on each use. News doesnéed the resulting potential concurrenespecially whemrnews runs relatively
quickly, and the locking was clearly a substantial fraction of the execution @maews was changed to
use B-news compatible locking, with a single lock for the news system as a \@wlglicity and speed
often go together.

When sending articles to a site using batchingws just appends the filename of each article to a
batch filefor that site. The batch file is later processed by the batthgrinciple, batching is an option,
and different sites may get fiifent sets of newsgroups. In practice, few articles are ever sent unbatched,
and most articles go to all sites fed by a given sysfEnis means thanhewsis repeatedly appending lines
to the same set of batch files. Noticing this, Collyer changete®s to keep these files open, rather than
re-opening them for every articleOnce you've got it, hang onto it.

These two simple changes—coarser locking and retaining open files—cut system time by about 20%
and real time by still more.

On return from Christmas holidays, after considerable agonizing over performance issues, Collyer
turned some small, heavily-used character-handling functions into madnasreduced user-mode time
quite a bit. A function call is an expensive way to perform a small, quick task.

Rnewswas always looking up files by full pathnames. Changing dhidir to the right place and
use relative names thereafter reduced system time substariadiglute pathnameseaonvenient but not
cheap.

Studying the profiling data revealed tlaeéws was spending a lot of time re-re-re-reading $kie
andactive files. Thesdiles are needed for processing every article, and they are get l@ollyermodi-
fied rnewsto simply read these files in once and keep them in core. This change alone cut system time and
real time by roughly 30%Again, once you've got it, darthrow it away!

There is a more subtle point here, as wdllhen these files were re-read every time, they were gen-
erally processed a line at a time. The revised strategy wstsitthe file to determine its sizenalloc
enough space for the whole file, and bring it in with a sirgdd. This is a vastly more efficient way to
read a filel Tasks which can be done in one operation should be.

* The price for this tactic is that the code has to be prepared for the possibility that the number of sites being fed exceeds the supply
of file descriptors. Fortunatelthat is rare.

At this point (mid-January 1986), @ews was faster than Bnews by one order of magnitude, and
there was much rejoicing.

In principle, the ‘Newsgroups:’ header line, determining what directories the article will be filed in,
can be arbitrarily far from the start of the article. In practice, it is almost always found within the first thou-
sand bytes or so. By complicating rnews substantialhecame possible in most casegteat the file in
the right place (or the first of the right placesjusr/spool/newshefore writing any of the article to disk,
eliminating the need for temporary files or even temporary links. The improvement in system time was
noticeable, and the improvement in user time was even more noticEabfmme for the worst case, but
optimize for the typical case.

There are certain circumstances, notably control-message articles, in which it is necessary to re-read
the article after filing it. Rnewsoriginally re-opened the article to permit this. Changing the invocation of
fopento use thev+ mode made it possible to just seek back to the beginning instead, winabhigaster.

This, plus some similar elimination of other redundant calispien, reduced system time by over 30%.
Get as much mileage as possible out of each call to the kernel.

Both scanning the in-cowgctive andsys files and re-writing thactive file are simpler if the in-core
copies are kept exactly as on disk, but this implied frequent scans to locate the ends of lines. It turned out
to be worthwhile to pre-scan tlaetive file for line boundaries, and remember theWihen storing files in
an unstructured waya little rememberd information about their structeirgoes a long way in speeding up
access.

We dready had &TREQmacro, just a simple invocation sircmp, as a onvenience. As result of
some other experience by Spendaollyer tried replacing some calls efrncmp by a STREQNmacro,
which compared the first character of the two strings in-line before incurring the overhead of calling
strncmp This sped things up noticeablgnd later got propagated through more and more of the code.
String-equality tests usually fail on the very first charactest the water befertaking the plunge.

While looking at string functions, Collyer noticed tlsttncmps to cetermine whether a line was a
particular header line had the comparison length computed by apglyleg to the prototype header
With a little bit of work, the prototypes were isolated as individual character arrays initialized at compile
time. Thispermitted substituting the compile-tinsezeof operation for the run-timstrlen. Let the com-
piler do the work when possible.

At this point, profiling was turned ofemporarily for speed test®rofiling does impose some over
head. Thespeed trials showed thatr@ews was now running at over 15 times the speed oiéBvs.

After months of adding frills, bunting and B 2.tompatibility, Collyer again returned to perfor
mance tuning in August 1986. The 4.2BSD kerneutus now included the 4.3BSBhBameicaches, which
improve filename-lookup performance consideratipfortunately considerations of crash recovery dic-
tated some loss in performance: it seemed desirable to put batch-file additions out by the line rather than by
the block. Performance is not everything.

Gprof revealed that newsgroup name matching was an unexpected bottleneck, so that module was
extensively tweaked by addimggister declarations, turning functions into macros, appdTRREQNand
such more widelyand generally tuning the details of string operations. The code that haydiékd lines
got similar treatment next. The combination cut 40¥aeérmode time. Persistent tuning of key modules
can yield large benefits.

Newsgroup matching remained moderately costig an investigation of where it was being used
revealed two separate tests for a particular special form of name. It proved awkward to combine the two,
so the testing routine was changed to remember having done that particular test Hltbadsame ques-
tion is asked repeatedlgnemorize the answer.

* And supposed B 2llcompatibility, as hose who remember the short-lived cross-posting restrictions will recall.

By this time, the number of system calls needed to process a single article could be countesl on one’
fingers, and their individual contributions could be asses8¢ane point it was desirable forareat to
fail if the file already existed, so this was being checked with a cattdessfirst. JohnGilmore pointed
out that on systems with a 3gamentopen (4.2BSD, System V), this test can be folded into dpen.
The elimination of the extra namdile (name) mapping cut both system time and real time by another
15%. (Notethat this systerdoeshavenameicacheing!) File name lookups arexpensive; minimize them.

The development systerat€s, a 7/50) is now filing 2-3 articles per second on averagf;aser (a
Sun 3/160 with an Eagle disk) is typically filing 6-7 articles per sec@hewsruns over 19 times as fast
in real time as Bnews, over 25 times as fast in system-mode CPU time, roughly 3.6 times as fast-in user
mode CPU time, and over 10 times as fast in combined CPU times.

With one exception (sdeuture Directiong, it now appears that very little can be done to speed up
rnews without changing the specificationt. seems to be executing nearly the bare minimum of system
calls, and the user-level code has been hand-optimised fairly heavily.

3. Expire Performance

The rewrite ofexpire that started this whole effort was only partly motivated by performance prob-
lems. Performancwas definitely bad enough to require attention, but thexre of the time also had
some serious bugsiorse, the code was a terrible mess and was almost impossible to understand, never
mind fix. Early efforts were directed mainly at producing a version that weailkt rewriting expire from
scratch simply looked like the easiest roubecisions made along the wagmely for other reasons, nev-
ertheless produced major speedups.

The first of these decisions was a reduction in the scope of the progampire had several
options for doing quite unrelated tasks, such as rebuilding si¢istry file. The code for these functions
was substantial and was somewhat interwoven with the @skpire adheres closely to a central tenet of
the ‘Unix Philosophy’:a program should do one task, and do it welhis may appear unrelated to peffor
mance, but better-focussed programs are generally simpler and sredleing their resource consump-
tion and making performance tuning easier (and hence more lidalgddition, a multipurpose program
almost always pays some performance penalty for its generality.

The second significant decision had the biggdetebn performance, despite being made for totally
unrelated reasond-or each news article, the B news history file contained the arrival date and an indica-
tion of what newsgroups it was in. Thisanostall the information tha¢éxpireneeds to decide whether to
expire an article or not. The missingata is whether the article contains an explicit expiry date, and if so,
what it is. B expire had to discover this for itself, which required opening the article and parsing its head-
ers. Asite which retains news for two weeks will have upwards of 5,000 articles o\ fflew dozen of
them will have explicit expiry datesBut B expie goened and scanned all 5,000+ articles every time it
ran! This was a performance disaster.

We atually did not want to parse headersskpireat all, because the B news header-parsing code
was (and is) complex and was known to contain major bugs. The performance implications of this were
obvious, although secondary at the tintéeader parsing is itself a non-trivial task, and accessing 5,000+
files simply cannot be made chedpformation needed centrally should be kept centrally.

The C news history file has the same format as that of B news, with one addition: a field recording
the explicit expiry date, if anyf each article.If no expiry date is present in the article, the field contains
‘~’ as a placemarkér In this way the header parsing is dooaceper article, on arrival. In fact, the extra

* Recent versions of B news have made some attempt to redress this lack, butdueneens far as C expire. The discussion here
applies to the B expire that was current at the time C expire was written.

T It would be possible to simply compute a definitive expiry date for an article when it arrives, and recortishabuld eliminate
the decision-making overheaderpire but would greatly slow the response to changes in expiry pdicice one reason to change
policy is time-critical problems like a shortage of disk space, this loss of flexibility was judged unaccdptaliletter to leave the
expiry decision t@xpireand concentrate on makiegpiredo it quickly.

effort involved is essentially nil, sinaeaewsdoes full header parsing at arrival time anywByewshad to
be changed to write out the expiry date, and code which knew the format of the history file had to be
changed to know about the extra field. Perhaps a dozen lines of code expsideere involved.

A crude first version of @xpire, incorporating these decisions in the most minimal, waayan order
of magnitude faster than Bxpire. Precise timing comparisons were not practical at the time, since the
original motive for Cexpire was that Bexpire had stopped working completelgrippled by bugs in its
header parsing. Later versions ofeRpire did cure this problem, but we were no longer interested in
putting up slowbuggy software just to make an accurate comparison.

Further work on Gxpire mostly concentrated on cleaning up the hasty first version, and on incorpo-
rating desired features such as selective expiry by newsg&rlpctive expiry caused a small loss in-per
formance by requiringxpireto check the newsgroup(s) of each article against an expiry-contrdtése,
expirebenefitted from the work done to speed up the newsgroup-matching primitivesvgfsince expire
uses the same routinel.you re-invent the squarnwheel, you will not benefit when somebody etsmas
off the corners

One improvement that was made late in development was in the format of the dates stored in the his-
tory file. B rnews stored the arrival date in human-readable form, expire converted this into humeric
form for comparisons of date®ate conversion is a complex operation, and the widely-distrilgetthte
function used by news is not fast. Inspection of the code establishegkpirawas the only program that
ever looked at the dates in the history filthere is some potential use of the information for debugging,
but this is infrequent, and a small program that converts decimal numeric dates to human-readable ones
addresses the issu®oth Crnews and Cexpire now store the dates in decimal numeric forBtore
repeatedly-used information in a form that avoids expensive conversions.

Actually, C expire bows to compatibility by accepting either form on input, but outputs only the dec-
imal form as it regenerates the history file. Thus, in the worst eapaedoes the conversion only once
for each history line, rather than once per line per fuhthey hand you a lemon, make lemonade”.

If expireis archiving expired articles, it may need to create directories to hold them. This is an inher
ently expensive operation, but it is infrequently needddwever checking to see whether i in fact
needed is also somewhat expensive... and the answer is almost always ‘no’. The same is true of checking
to see whether the original article really still exists: it almost always d@éss cannot be subsumed
under generic ‘archiving failed’ error handling because a missing original is just an article that was can-
celled, and does not call for a trouble repotgcordingly, C expire just charges ahead and attempts to do
the copying. Only if this fails doesxpireanalyze the situation in detaiCarrying a net in front of you in
case you trip is usually wasted effort.

Archiving expired articles often requires copying across filesystem boundaries, simoé uth\com-
mon to give current news and archived news rathé&erdiit treatment for space allocation and backups.
Copying from one filesystem to another can involve major disk head movement if the two filesystems are
on the same spindleSince head movement is expensive, maximizing performance requires getting as
much use as possible out of each movemdaxpireis not a lage program, and even on a small machine
it can spare the space for a large copyindenufSo it does its archiving copy operations using an 8KB
buffer. Buying in bulk is often cheapeBince 8KB accommodates most news articles in one gulp, there is
little point in enlarging it furtherThe law of diminishing returns does apply to buying in bulk.

Sinceexpire is operating on the history file at (potentially) the same timertigats is adding more
articles to it, some form of locking is hecessaBiven thatexpire has to look over the whole database of
news, and typically has to expire a modest fraction of the articles, it is a relatively long-running process
compared tanews. Contention for the history-file lock can be minimized by noting thatvs never does

T A corollary of this is: know thy libraries, and use them
* As witness the progressive increase in filesystem block size that produced major performance improvements in successive versions
of 4BSD.

anything other than append to the figoexpire can leave the file unlocked while scanning it; the contents
will not change. When (and only whea)pire reaches end-of-file, it locks the news system, checks for
and handles any further entries arriving on the end of the history file meanwhile, and finisheskimg
data that wort’change is wasteful.

After careful application of these various improvementsxfire is fast enough that further speedup
is not worth much ébrt. However an analysis of where it spends its time does suggest one area that might
merit attention in the futureExpire rebuilds the history file to reflect the removal of expired articlédse
history file is lage. Expire must also rebuild thdbmindexing data base, since it contains offsets into the
history file. This data base is comparable in size to the history file itself, and is generated in a less orderly
manner that requires more disk accesses.

Much of the time needed for these operations could be eliminagggirecould mark a history line
as ‘expired’ without changing its size. This could be done by writing into the history file rather than by
rebuilding the whole file, and the indexing database would not need alteration. This would also permit
retaining information about an article after the article itself expires, which would simplify rejecting articles
that arrive again (due to loops in the network, etc.) after the original has exphecistory file should
still be cleaned out, and the indexing database rebuilt, occasio@a#lypire contains some preliminary
‘hooks’ for this approach, but to date full implementation does not seem justifiegpire is already fast
enough.Know when you arfinished.

4. Batcher Performance

The C batcher is descended from a very old version written to add some minor functionality that was
not present in the B batcher of the time. It is small and straightforward, and contains only a couple of note-
worthy performance hacks.

The batcher works from a list of filed articles, to be composed into bat€heslist is by absolute
pathname. Allof these files reside in the same area of the systdractory tree, and referring to them
with absolute pathnames every time implies repeatedly traversing the same initial pathnamerlgrefix.
avoid this, the batcher initiallghdirs to a Ikely-looking place such asisr/spool/news Thereafterbefore
using an absolute pathname to open an article, it checks whether the beginning of the pathname is identical
to the directory where it already resides. If so, it strips this prefithefname before proceedinyf.you
walk the same road repeatedipnsider moving to the other end.

The batches input is usually in fairly random ordewith little tendency for successive files to be in
the same directorylf this were not the case, it would be worthwhile for the batcher to actually move
around in the directory tree to be closer to the next file.

The batcher used to copy data uspgc(getc()) loops. Thishas been replaced Hyead/fwrite
which is significantly fasteespecially if using the souped-figad/fwrite mentioned earlierlf you need to
move a mountain, use a bulldgzwt a teaspoon.

5. Future Directions

The one improvement we are still considering fioews is a radical revision of the newsgroup-
matching strategyNewsgroup matching still consumes about 18% of-usmte processor time. The key
observation is that the information that determines which newsgroups go to which sites seldom ¢hanges.
would probably be worth precompiling a bit array indexed by newsgroup and site, and recompiling it only
when theactive file or thesysfile changes in a relevant wayhis would cut the newsgroup-matching time
to essentially zero.

Rnewswould be faster (and simpler) if ‘Newsgroups:’ and ‘Control:’ were required to be the first
two headers (if present) of each article. At preseetvs tries to find them before starting to write the arti-
cle out, so that it can put the article in the right place from the start, but it has to allow for the possibility
that vast volumes of other headers may precede them.

Hashingactive-file lookups inrnews would be fun, but profiling suggests thas itbt worthwhile
unless the number of newsgroups is in the thousands.

WhenpDP-11s are truly dead on Usenet, the use ofjeaper-process memoriesay allow further
speedups tonews by reading the entire batch into memory at once and writing each article to disk in a few
writes (it cant easily be reduced to a singleite because headers must be modified before filing).

One optimization we haweot considered is re-coding key parts in assembnews already runs
on five different types of machindJse of assembler would be a maintenance nightmare, and probably
would not yield benefits comparable to those of the more high-level changes.

6. Acknowledgements

lan Darwin ran the very earliest alpha versionsriméws and gave helpful feedbackMike
Ghesquiere, Dennis Ferguson and others have run later versions and prodded Collyer to fix or implement
assorted things. John Gilmore and Laura Creighton read and criticized an early alpha vensias. of

7. Appendix: rnews Times

Measurements have been taken onAX V750 running 4.2BSD under generally light load, using a
batch of 297,054 bytes of net.unix-wizards containing 171 articles and “104 cross-pasiitigees are in
seconds per article.

time real user sys comments

85 Dec6 00:54 4.68 0.3 1.29 B newsrejecting all. (b.1.rej)

85 Dec6 00:54 3.184 0.69 0.67 first timing trial; profiling on(c.1)

85 Dec600:54 0.66 0.175 0.199 rejecting all (c.2.re))

85 Dec603:25 0.58 0.175 0.175 still rejecting all (c.3.rej)

85 Dec 6 23:46 9.058 0.631 2.251 B news using private directories, rejected 53 of the 171 arti-
cles as "too old" (b.2)

85 Dec700:24 2.0 - - ona 10 MHz 68000 with slow memory and slow disk (crude

(est) timings) (c.darwin.1)

85 Dec 7 00:40 7.576 0.684 2.403 B news without the "too old" reject code and having cleared
out history (b.3)

85 Dec7 04:43 1.99 0.49 0.53 accepting the articles, using read and write for bulk copies
(c.4)

85 Dec 7 06:10 2.261 0.497 0.449 optimized by less locking & keeping batch files open (c.5)

0

85 Dec707:32 1.383 0.491 0.414 same as the last one, but with a lower load average (around
1.5) (c.6)

85 Dec 16 03:431.380 0.447 0.374for calibration after misc. cleanup (c.7, c.8)

86 Jan 13 00:231.232 0.349 0.301turned hostchar() into a macro (c.9)

86 Jan 13 04:261.36 0.333 0.242 using in-core active file, under heavy load (c.10)

0]
86 Jan 13 08:241.94 0.349 0.253 using in-core sys file too, under heavy load. Re-run this trial!

(c.11)
86 Jan 13 08:420.892 0.332 0.245re-run at better nice. Not striking, except for real tirias
M run in a large directory; ignore. (c.12)
86 Jan 13 08:590.861 0.3330.212 re-run at good nice & in a small directorijdave beaten B
Q) Q) news byone order of magnituden real & sys times! Beat it

by more than twice on user time. (c.13)

86 Jan 21 19:151.208 0.349 0.245creat 1st link under final name, only link to make cross-
postings; with HDRMEMSIZ too small (c.14)

86 Jan 21 19:570.728 0.318 0.193previous mod, with HDRMEMSIZ of 4096 (c.15)

86 Jan 22 01:200.719 0.315 0.166fewer opens (just rewind the spool file), but Xref(s): not work-

ing (c.16)
86 Jan 22 01:530.637 0.3140.154 fewer opens fixed to spell Xref: right; Xref: not working (c.17)
0] 0
86 Jan 22 04:000.874 0.325 0.174fewer opens with Xref: fixed (times may be high due to calen-
dar) (c.18)

86 Jan 22 05:450.694 0.309 0.159under lighter load, times are better (c.19)
86 Jan 24 04:290.715 0.317 0.129 turn creat & open into just creat, under slightly heavy load
0] (c.20)
86 Jan 24 06:06 0.628.288 0.129 reduce number of calls on index (by noting line starts at the
M M M start) and strncmp (via macro) in active.mem.c, but still profil-
ing and writing stdout and stderr to the tty (c.21)
86 Jan 24 07:22 0.653 0.200.123 fewer strlen calls (by usingizeof s - 1), writing stdout to
M M /dev/null and withprofiling off, but under moderate load; try
again (c.23)
86 Jan 24 07:35 0.574€.216 0.123 as last time, but stdout to tty(!) and under light loaghning
M M M 15.67 times as fast as B rne(@s24)

86 Aug 8 4:23 0.839 0.51 0.124 performance hit: flush after each history line for crash-
resilience; run fogprof output and calibration with later runs.
running under 4.2.1BSD (has 4.3 namei cache). meal and
user times are way up; due to gprof profiling? (c.25)

86 Aug 8 04:24 0.962 0.438 0.131 run with faster ngmatch, withegister decl.s and wordmatch

M and STREQN macros; saved 15% useser time is better
than c.25, but still up from c.24. (c.26)
86 Aug 10 07:350.805 0.345 0.135 further speedups: ngmatch has maegister decl.s and in-line
M index; more use of STREQ(N) macro for str(n)cmp in-hdr
match, ngmatch.c and transmit.c; faster ishdr without index.
real & user times are better than both ¢.26 and c.25 (c.27)
86 Aug 11 04:19 1.012 0.303 0.146 rewrote sys.c, used INDEX and STREQ(N) macros through-
M out rnews. real and sys times are up, but user continues to
decline. (c.28)
86 Aug 12 03:511.315 0.315 0.154minor tweaks: all.all.ctl caching, etc. (c.29)
86 Aug 30 17:56 0.564 0.189.112 light load, thought we had 3grmpen in fileart, but didt’
M M Odd. Stopped using gprof(c.30)
86 Aug 30 17:570.475 0.1910.095 Really and truly use the 3¢appen. 19 times B rnews speed.

® (" (c31)

