
A Partial Tour Through the UNIX® Shell

Geoff Collyer

Department of Statistics

University of Toronto

Toronto, Ontario, Canada

M5S 1A1

utzoo!utstat!geoff

geoff@utstat.toronto.edu

ABSTRACT

We haverecentlycompletedprotractedsurgeryon the UNIX commandinterpreter
or ‘shell’ [Bourne1978a]to makeit usethe standardUNIX memoryallocator(malloc(3)
andrelatives)for its internalmemorymanagementinsteadof theoriginal scheme(catch-
ing its own memoryfaults, using the sbrk(2) systemcall to grow its memoryallocation
and restartingfaulting instructions). We also fixed somebugs, lint(1) complaintsand
suboptimalperformance.This paperdescribesthe lessonslearnedabout the internal
workingsof theshell. Much of this informationis oral folklore or is simply not generally
known,andrequiresa determinedeffort to learn,yet is essentialto correctunderstanding
and maintenance of the shell.

1. Introduction

A very sketchyoverviewof theshell is that it parsesits input into a parsetree,then
walks the tree, executing the tree nodesby creating pipes, forking, redirecting I/O
descriptors,execing commands,andthe like. Interwovenwith this aremacroexpansion;
honouringquoting;copingwith keyboard,alarmclock,andotherinterrupts(via signals);
andmaintainingvariablesandfunctions. Onecanthink of theshellasa macroprocessor
which also interpretscommands.

Theoriginal SeventhEdition shellhadto run in a small addressspace(64k bytesof
instructionsand64k bytesof data,including stacksegment),yet placesno arbitrarylim-
its on lengthsof stringsor input lines (which mayexplainsomeof thecontortionsin the
code). With the exceptionsof eval and quoting,which are incompletelyspecified,the
externalspecificationof the shell is simple, rational, and clean. No commentsin this
papershould betaken asdenigrating theseachievements.

Theshellsourcecodeis opaqueandunder-commentedin spots,which causesmain-
tainersto attemptonly minimal changesandfixes. Theshellwasthelastprogramported
to the Interdataduring the original UNIX port, [Johnson1978a]due to the difficulty of
gettingthe detailsof restartingfaulting instructionsjust right, which is why the Seventh
Edition (alsoknown as‘‘V7’’) distribution tapeincludes/bin/osh, the Sixth Edition
shell. [Ritchie1987a]Oneclichedcomplaintaboutthe original shell source,that it was
written in adialectof theC languageresembling Algol68, isnot aproblemonceonegets

used to it, particularly if one has a reading knowledge of Algol 68. In any case, recent
System V shells are written in ordinary C. However, this is the least of the problems.

Upon attempting to make the Ninth Edition shell (derived from the System V
Release 2 shell) run on a Sun-3 under SunOS 3.x, we ran into trouble with the shell’s
peculiar internal memory management. The shell often failed in a spectacular and annoy-
ing way: it grew its stack segment to maximum size and then dumped core. We discov-
ered many previously-undocumented characteristics of the shell in the process of con-
verting the shell to use malloc(3) and relatives. The result of this work is referred to
throughout this paper as ‘‘the new shell’’, for lack of a better name. This paper discusses
only the parts of the shell visited in the course of making it work correctly on the Sun-3;
the rest of the shell is relatively straightforward.

The rest of the paper consists of six sections: section 2 describes the design of the
old shell, section 3 the problems in implementation of the old shell, section 4 the fixes we
applied to produce the new shell, section 5 our methods, section 6 our conclusions, and
section 7 acknowledgements. Those readers interested only in the internals of the old
shell may safely skip sections 4 and 5.

2. Design

2.1. Memory Management

The first subtlety encountered by most shell maintainers is the shell’s internal mem-
ory management, which has been characterised as ‘extremely elegant, but a house of
cards’. The shell contains its own memory allocator, a variant of the Seventh Edition
malloc, which maintains two distinct kinds of storage: heap storage, which has an indefi-
nite lifetime and resembles ordinary malloced memory; and ‘‘stak’’ storage (so spelled to
distinguish it from the shell’s stack segment) which is allocated and deallocated in strict
last-in, first-out order. Heap and stak storage blocks are intermingled in the data seg-
ment.

A fundamental abstraction of the shell is a stack of stak storage, in which the top
item on the stack is typically a growing string. The top item may be moved at the conve-
nience of the memory allocator, so it should (in theory, if not always in practice) only be
referred to by the functions and macros of stak.h; keeping private pointers into the top
item is forbidden. Once the top item has been grown to its maximum extent, it may be
made permanent and immovable, and a new, empty top item is begun.

The interface to the stak storage manipulators, stak.h, declares several functions
and macros, notably pushstak(byte), which appends a byte to the top item and advances
the top past it, acquiring more memory from UNIX as needed. relstak() yields the integer
offset of the top of the top stak item, i.e. the size of the top item. absstak(offset) yields a
temporary pointer to the top item, offset bytes in; this pointer must not be retained.
setstak(offset) sets the top of the top item to be offset bytes in. zerostak() stores a zero on
the top of the top item but does not move the top. curstak() yields the a temporary
pointer to the top of the top item; this pointer must not be retained. usestak() calls
locstak() and ignores the result. fixstak() calls endstak with a pointer to the top of the top
item.

locstak() returns a temporary pointer of the bottom of the new top stak item, which

will be big enough for any structure used in the shell (notably struct fileblk or
2*CPYSIZ from io.c); this pointer may be used until one of pushstak, endstak, or
fixstak is called. endstak(argp) terminates the top item at argp with a zero byte, makes
the top item permanent, starts a new top item, and returns the address of the terminated
and now permanent item. getstak(n) returns a permanent item of size n bytes by growing
the current top item. savstak() asserts that the top item is empty and returns the address
of the bottom of the top item. tdystak(ptr) removes temporary files (e.g. from here docu-
ments) described by structures on the stak down to address ptr, and pops the stak down to
but not including ptr. stakchk() reduces the data break if possible. cpystak(string) copies
the string to a new permanent item and returns its address.

The memory allocator and other parts of the old shell assume that the address of
newly-allocated stak storage will be greater than the addresses of all other still-active stak
storage. (This is not true of storage obtained from arbitrary mallocs.) This property is
exploited by tricks such as recording a single ‘‘watermark’’ pointer, to mark the points in
several intertwined stacks of stak storage above which data may be eventually discarded,
then later popping the top items from the stacks by popping each stack until its stack
pointer reaches the watermark pointer, or drops below it.

Heap storage is allocated by alloc (also known as malloc in the old shell). The shell
assumes fundamentally that free will ignore attempts to free the address zero (‘‘null
pointers’’), addresses in the shell’s stack segment (automatic variables, command-line
arguments, and environment variables), and addresses of stak storage not yet made per-
manent and immobile; the shell’s free is meant to free only heap storage and permanent
stak storage.

The old shell catches its own memory faults (via the SIGSEGV signal, typically
caused by heap allocation beyond the data break or growth of the current stak item
beyond the data break), grows the data segment with sbrk(2) by brkincr bytes, and
returns control, thus resuming the faulting instruction.

2.2. No use of C library

The shell makes no use of the C library beyond system calls, perhaps because the C
library was not well-developed when the shell was written, perhaps to make the shell
self-contained, or perhaps to avoid dangerous interactions among the shell, the shell’s
malloc, the C library, and the C library’s malloc(3). The effect has been to make the
shell fragile and less portable than if it did rely on the C library. For example, the shell’s
memory allocator does not co-exist with the C library, so it is not safe to call the
directory(3) directory-reading routines, which call malloc(3).

3. Implementation Problems

3.1. Memory Management

The heap allocator, in blok.c (a modified V7 malloc(3)), and the stak allocator, in
stak.c, together form the shell’s memory allocator. They are intimate with each
other’s internals, in part because the heap allocator must move the top item on the stak
when allocating heap storage, in order to keep the top item of stak storage at the top of
the data segment.

alloc moves the top stak item to above the new top of the heap arena when the arena
is grown, and promotes other stak items to freeable permanent storage, chained together.
blok.c rounds the number of bytes to allocate down by anding it with the complement
of (brkincr minus one); this only works correctly if brkincr is a power of 2, yet stak.c
adds 256 to brkincr, which starts off at 512! Thus the rounded-down value will be too
large, which only hurts performance, fortunately. stak.c should probably double
brkincr instead.

The shell’s allocator cannot co-exist with some malloc implementations because it
assumes that only it allocates storage, and some mallocs do likewise. [Korn1985a] Fur-
ther, the shell contains malloc and free definitions, but not a realloc definition, so uses of
realloc in the C library will drag in the C library’s realloc, which will refer to the wrong
malloc and free. More subtly, because the old shell allocates storage above its data
break,! even a tolerant malloc(3) which tried to co-operate with programs which do their
own allocation via brk(2) or sbrk(2) would be misled and would likely step on the old
shell’s storage above its data break. Perhaps due in part to this problem, the old shell
goes to great pains to avoid using the C library, except to execute system calls, necessi-
tating reinvention of parts of it, notably the string functions. The new shell relaxes this
restriction and so can use the C library freely.

The assumption that faulting instructions can be (and are) restarted by return from
the appropriate signal handler does not hold on all machines of interest. In particular, the
Sun-2, Sun-3, [Shannon1988a] and Cray-1 kernel-and-hardware combination are known
not to correctly restart faulting instructions, which can lead to failure to initialise mem-
ory, and thus to use of the address zero. Furthermore, on the Sun-3, and other machines
which do not permit reference to address zero, the old shell’s naive assumption that
growing the heap will cure a memory fault does not hold for references to address zero,
and the strategy of growing the heap on each fault merely grows the heap indefinitely,
often until swap or page space is exhausted, when the old shell’s memory allocator blows
an assertion and dumps core, slowly.

Unfortunately the stak.h macros, especially pushstak, were not used everywhere
that they should have been used, and in places the equivalent code was written out in-
line, or other internal programming conventions were violated. Cray Research found and
fixed the most troublesome of the abuses of pushstak, and these fixes found their way
into the Ninth Edition shell. We found and fixed the rest.

3.2. Here Documents

Here documents are a means of supplying standard input to a command from a
script and are denoted by ‘<<’.

Here documents appear to have been added to the original Seventh Edition shell at
the last moment. The code is localised, but careless about error-checking and perfor-
mance. Here documents are implemented by copying lines from the shell’s input to a

! The data break or just break is the address of the lowest-numbered byte of the data segment not
allocated to a UNIX process. There may be accessible memory between the break and the bottom
of the stack segment, but touching it is bad form and may result in a memory fault (‘‘segmentation
violation’’).

temporary file during parsing until a line containing only the delimiter is seen; then later,
during execution of the command, if the delimiter was not quoted, copying the first tem-
porary file to a second temporary file while processing macros (e.g. expanding $DMD). If
the second temporary file was created, it is opened as the command’s standard input and
unlinked, so it will not have to be removed later; otherwise the first temporary file will be
opened as the command’s standard input. In either case, the first temporary file will have
to be unlinked later, but the shell may not get the chance if it is killed first or if the block
containing the command with the here document was terminated via the exec built-in
command, which replaces the shell with the command.

write system calls to the first temporary file were unchecked, so creating a here doc-
ument when the file system containing /tmp is full may lead to odd behaviour and no
diagnostic from the old shell. (writes to the second temporary file use a more general
mechanism, flush in macro.c, and are still unchecked in the new shell. Oops!) Also, in
the old shell, when copying input to the first temporary file, lines are collected until at
least CPYSIZ (512) bytes are present, then are written to disk as whole lines, so
CPYSIZ+ε bytes are written at a time, causing writes to be unaligned with file system
block boundaries, and contributing to the slowness of here documents and thus to the
slowness of unbundling of shell ‘‘bundles’’ or ‘‘archives’’. [Kernighan1984a]

3.3. Directory Reading and Wildcard Expansion

The Seventh Edition shell reads directories to expand wildcards (‘‘generate file-
names’’), using the read system call to read 16 bytes at a time and assuming a Seventh
Edition directory layout. The Ninth Edition (and presumably System V Release 2) shell
used some of the directory(3) routines from the C library, but used private versions of
others. This was done so that memory allocation would be under the control of the
shell’s private opendir and closedir. Unfortunately, it did require the shell to know
details of buffer allocation in the directory(3) routines, and those details changed
between 4BSD and SunOS 3.0, for example. (We believe 4BSD used a static buffer but
SunOS 3.0 allocates the buffer dynamically.)

3.4. I/O Redirection

When the old shell executes a redirected built-in command such as set, it saves the
redirected descriptor by using dup2(2) to make a duplicate descriptor, on a fixed descrip-
tor, USERIO, which is typically 10 and must be above the shell’s user-accessible descrip-
tor range (0-9). Unfortunately, the old shell isn’t prepared to deal with multiple redirec-
tors of built-in commands, so set </etc/passwd >/dev/null causes set to
execute and then causes the old shell to read /etc/passwd(!).

When applied to any command, built-in or not, <’’ and >’’ have no effect in the
old shell. This appears to be a relic from the days before $* and $@.

 This undocumented misfeature of the shell was discovered by a naive and serendipitous user
who was pleasantly surprised to find that <$1 in a shell script ‘did the right thing’ whether the
script was invoked with no arguments or with one, and commented upon this surprise.

3.5. Name-to-i-number translations

The code to run down $PATH looking for a command executed more system calls
which translate file names to i-numbers than necessary; upon finding a command, it
would access(2) the file, then stat(2) it.

3.6. Exit

On many (by intent, all) UNIX systems, a program which does not use the standard
I/O library (stdio) [Kernighan1979a] will not cause any part of stdio to be loaded with it.
This is not true on SunOS 3.0, for example; a program such as the shell which does not
use stdio still gets some of stdio loaded with it, due to exit calling fflush, and that in turn
causes some malloc to be loaded. Sun’s malloc includes 8,192 bytes of BSS (unini-
tialised data segment) containing its initial free block headers. This seems excessive,
given that programs often use malloc in an attempt to conserve memory.

4. Fixesin the new shell

4.1. Memory Management

Our original fix to the memory allocator, to make it co-exist with the C library and
work in general, was to delete blok.c thus invoking malloc(3) and to rewrite stak.c
from scratch to use malloc(3). Much later we discovered that an alternative, less clean
and less robust fix is to just delete private directory(3) functions, make chkid reject zero
addresses, and provide a private realloc in blok.c which implements the semantics of
realloc(3) using the private malloc and free, though one must also increase the values of
BRKINCR and BRKMAX to at least the page size on some systems. This apparently
works by causing every memory fault to increase the data segment enough to cover the
largest allocation request normally seen inside the shell. The new shell does not use this
fix.

The new shell uses pushstak and the other interface macros and functions where
needed, and pushstak now arranges to grow the top item of stak storage as needed. The
performance impact of this has not been measured, but appears to be insignificant; in any
case, this checking is necessary. stak.c has been completely rewritten from scratch
(see the Appendix).

We now simulate the single pointer to several interwoven stacks of stak storage by
attaching a pointer to the previous stak item to each new stak item as it is allocated, and
retaining one watermark pointer per stack.

We layer another function (shfree), on top of free(3), and the new shell is compiled
with #define free shfree and without the old shell’s #define alloc
malloc, alloc being the name by which the heap allocator is invoked. shfree rejects
attempts to free the address zero, addresses in the stack segment or of stak storage;
free(3) is used directly to free stak storage. To distinguish heap storage from stak stor-
age, the new shell’s allocator attaches an integer containing a magic number, different for
heap and stak storage, to each item of storage allocated. This costs a little bit of memory,
but experiments on a PDP-11 suggest that this is not a serious problem.

We simply use malloc(3) and related functions, and thus require none of the compli-
cated machinery for restarting faulting instructions. This has the pleasant side-effect that

a buggy shell wielding a wild pointer typically dumps core immediately, instead of grow-
ing its stack segment until the kernel kills it (producing a multi-megabyte core dump)
minutes later.

4.2. Here Documents

We have repaired both of the here document bugs, with one minor loss of general-
ity: the here document delimiter must not exceed CPYSIZ bytes. CPYSIZ bytes are now
written to the first temporary file (until end-of-file is read), and the remaining fractional
line is copied back to the start of the copying buffer, which is 2*CPYSIZ bytes long.

4.3. Directory Reading and Wildcard Expansion

We solved the messy problems of reading directories by deleting the private func-
tions and using only the C library directory(3) functions to read directories. The shell
was modified to call the new function openqdir instead of calling opendir directly;
openqdir passes to opendir a copy of the file name with the 0200 bit, used by the shell
internally to mark quoted characters (e.g. the first character of a command argument such
as \?*), stripped from each character.

We also discovered that the code that implemented negated character classes (for
example, [!a-z]) in the old shell was incorrect and had only worked by chance; Henry
Spencer replaced the incorrect code with robust, working code.

4.4. I/O Redirection

The new shell is prepared to save multiple standard descriptors by duplicating them
to whichever descriptors above the normal range are free.

I/O redirections now behave as one would expect: since the empty filename refers to
the current directory, <’’ will open the current directory on some systems, and >’’
will, one hopes, fail with an error message.

4.5. Name-to-i-number translations

Use of access is inappropriate in the shell, as one wants to check against the shell’s
effective ids, and unnecessary, as one can easily check the permission bits obtained from
the stat. This is faster because each system call, such as access or stat, which takes a
filename as a parameter must translate it to the (device-number, i-number) pair used
internally by UNIX to refer to files. This translation is relatively slow because it typically
requires disk accesses, even on systems with namei caches. Still faster would be to sim-
ply try to exec(2) each filename in turn, and examine errno afterward; this will not work
for the type (a.k.a. whatis) built-in, though, and we have not done this.

4.6. Exit

malloc is not an issue in the new shell, but unwanted static stdio buffers do take
quite a bit of data space. Defining exit(n) { _exit(n); } to avoid stdio signifi-
cantly reduces the shell’s size, thus reducing the time needed to fork(2) and speeding
command execution.

5. Methods

Debugging the shell is more difficult than one might expect. Initial debugging was
largely by inspired guesses and tedious experimentation, due to the difficulty of examin-
ing multi-megabyte core dumps, which tend to be uninformative anyway.

Once the shell was made to stop catching SIGSEGV, it was possible to use debug-
gers to examine core dumps produced by buggy shells and produce stack traces, but lack-
ing a truly useful debugger (such as pi(9.1)), [Cargill1986a] we resorted, in the main, to
printing interesting variables (with the shell’s prs and prn, not printf(3)) and thinking
about the output. One other helpful technique was to insert magic numbers into each
instance of each relevant data structure when the instance was created, then check period-
ically for the presence of the number, and clear the number upon destruction of the
instance. This simple technique alone was a great help in keeping the shell sane by
detecting corruption and confusion early. We also linked the shell with a debugging ver-
sion of malloc supplied by Sun (/usr/lib/debug/malloc.o), which checks the
arena for consistency.

6. Conclusions

Debugging would certainly have been easier if the assumptions in the old shell code
had been documented; we hope that this paper will save shell maintainers many hours.
The new shell appears to be quite portable and has been run on the DEC PDP-11 under
V7, Sun-3 under SunOS 3.x, Sun-4 under SunOS 4.0, and MIPS M/1000.

Our new shell now contains comments which describe most of the newly-
discovered assumptions which had been hidden in the old shell.

Unfortunately, this version is not generally available, as it is derived from Ninth
Edition code. The new version of stak.c, however, is not licensed and is reprinted in
the Appendix to this paper.

7. Acknowledgements

Henry Spencer of the University of Toronto’s Department of Zoology hired the
author to perform the work described above, commented on drafts of this paper, ran vari-
ous versions of the new shell as /bin/sh on his machines while we discovered new
undocumented properties of the shell, and was patient while bugs were found and fixed.
The Department funded this work.

Cray Research found some of the places in which pushstak should have been used in
the old shell and repaired them, and fixed pushstak, in order to make the shell run on
Crays, at least some models of which are incapable of restarting instructions which abort
due to memory faults.

Dennis Ritchie incorporated Cray’s fixes into the Ninth Edition shell, and urged the
author to continue attempting to fix the shell rather than throwing it out and reimplement-
ing it. (He was of course right, in part due to the subtleties of getting details such as
quoting and eval just right. Nevertheless, a future reimplementation of the shell would
benefit by using more of the tools available in the C library and elsewhere, possibly
including yacc and lex.) Dennis also provided very helpful comments on a draft of this
paper.

Ian Darwin, Beverly Erlebacher and Tom Glinos proof-read drafts of this paper and
contributed helpful suggestions.

Any errors remaining in this paper are the responsibility of the author.

References

Bourne1978a. S. R. Bourne, ‘‘UNIX Time-Sharing System: The UNIX Shell,’’ Bell Sys.
Tech. J.57(6), pp. 1971-1990 (1978).

Cargill1986a. T.A. Cargill, ‘‘The Feel of Pi,’’ pp. 62-71 in USENIXConferencePro-
ceedings, USENIX, Denver, CO (Winter 1986).

Johnson1978a. S. C. Johnson and D. M. Ritchie, ‘‘UNIX Time-Sharing System: Portabil-
ity of C Programs and the UNIX System,’’ Bell Sys.Tech.J. 57(6), pp. 2021-2048
(1978).

Kernighan1979a. Brian W. Kernighan and Dennis M. Ritchie, ‘‘UNIX Programming �
Second Edition,’’ UNIX Programmer’sManual, Seventh Edition(January, 1979).

Kernighan1984a. Brian W. Kernighan and Rob Pike, TheUNIX ProgrammingEnviron-
ment,Prentice-Hall (1984).

Korn1985a. David G. Korn and Kiem-Phong Vo, ‘‘In Search of a Better Malloc,’’ pp.
489-506 in USENIX ConferenceProceedings, USENIX, Portland, OR (Summer
1985).

Ritchie1987a. Dennis Ritchie, privatecommunication, 1987.

Shannon1988a. Bill Shannon, privatecommunication, November, 1988.

Appendix: the new stak.c, minus debugging #ifdefs

This code was all written by the author; it is not subject to any source licences.
/* replaces @(#)stak.c1.4 */

/*
* UNIX shell
*
* Stacked-storage allocation.
*
* Maintains a linked stack (of mostly character strings), the top (most
* recently allocated item) of which is a growing string, which pushstak()
* inserts into and grows as needed.
*
* Each item on the stack consists of a pointer to the previous item
* (the "stakbsy" pointer; stakbsy points to the top item on the stack), an
* optional magic number, and the data. There may be malloc overhead storage
* on top of this.
*
* Pointers returned by these routines point to the first byte of the data
* in a stack item; users of this module should be unaware of the "stakbsy"
* pointer and the magic number. To confuse matters, stakbsy points to the
* "stakbsy" linked list pointer of the top item on the stack, and the
* "stakbsy" linked list pointers each point to the corresponding pointer
* in the next item on the stack. This all comes to a head in tdystak().
*
* Geoff Collyer
*/

/* see also stak.h */

#include "defs.h"

#undef free /* refer to free(3) here */

#define STMAGICNUM 0x1235 /* stak item magic */
#define HPMAGICNUM 0x4276 /* heap item magic */
#define MAGICSIZE BYTESPERWORD /* was once zero */

/* imports from libc */
extern char *malloc(), *realloc();
extern char *memcpy(), *strcpy();

/* forwards */
char *stalloc(), *growstak(), *getstak();

unsigned brkincr = BRKINCR; /* used in stak.h only */

static char *
tossgrowing() /* free the growing stack */
{

if (stakbsy != 0) { /* any growing stack? */
register struct blk *nextitem;

/* verify magic before freeing */
if (((int *)Rcheat(stakbsy))[1] != STMAGICNUM)

error("tossgrowing: bad magic on stack");
((int *)Rcheat(stakbsy))[1] = 0; /* erase magic */

/* about to free the ptr to next, so copy it first */
nextitem = stakbsy->word;
free((char *)Rcheat(stakbsy));
stakbsy = nextitem;

}
}

static char *
stalloc(asize) /* allocate requested stack space (no frills) */
int asize;
{

register char *newstack;
register int size = asize;

newstack = malloc((unsigned)(sizeof(struct blk) + MAGICSIZE + size));
if (newstack == 0)

error(nostack);

/* stack this item */
*((struct blk **)Rcheat(newstack)) = stakbsy; /* point back at old stack top */
stakbsy = (struct blk *)Rcheat(newstack); /* make this new stack top */
newstack += sizeof(struct blk); /* point at the data */

/* add magic number for verification */
*((int *)Rcheat(newstack)) = STMAGICNUM;
newstack += MAGICSIZE;
return newstack;

}

static char *
grostalloc() /* allocate growing stack */
{

register int size = BRKINCR;

/* fiddle global variables to point into this (growing) stack */
staktop = stakbot = stakbas = stalloc(size);
stakend = stakbas + size - 1;

}

/*
* allocate requested stack.
* staknam() assumes that getstak just realloc’s the growing stack,
* so we must do just that. Grump.
*/
char *
getstak(asize)
int asize;
{

register char *newstack;
register int staklen;

/* + 1 is because stakend points at the last byte of the growing stack */
staklen = stakend + 1 - stakbas; /* # of usable bytes */
newstack = growstak(asize - staklen);/* grow growing stack to asize */
grostalloc(); /* allocate new growing stack */
return newstack;

}

/*
* set up stack for local use (i.e. make it big).
* should be followed by ‘endstak’
*/
char *
locstak()
{

if (stakend + 1 - stakbot < BRKINCR)
(void) growstak(BRKINCR - (stakend + 1 - stakbot));

return stakbot;
}

/*
* return an address to be used by tdystak later,
* so it must be returned by getstak because it may not be
* a part of the growing stack, which is subject to moving.
*/
char *
savstak()
{

assert(staktop == stakbot); /* assert empty stack */
return getstak(1);

}

/*
* tidy up after ‘locstak’.
* make the current growing stack a semi-permanent item and
* generate a new tiny growing stack.
*/
char *
endstak(argp)
register char *argp;
{

register char *oldstak;

argp++ = 0; / terminate the string */
oldstak = growstak(-(stakend + 1 - argp)); /* reduce growing stack size */
grostalloc(); /* alloc. new growing stack */
return oldstak; /* perm. addr. of old item */

}

/*
* Try to bring the "stack" back to sav,
* and bring iotemp’s stack back to iosav.
*/
tdystak(sav, iosav)
register char *sav; /* returned by growstak(): points at data */
register struct ionod *iosav; /* an old copy of iotemp (may be zero) */
{

rmtemp(iosav); /* pop temp files */
if (sav != 0 && ((int *)Rcheat(sav))[-1] != STMAGICNUM) /* sav -> data */

error("tdystak: bad magic in argument");

/*
* pop stack to sav (if zero, pop everything).
* sav is a pointer to data, not magic nor stakbsy link.
* stakbsy points at the ptr before the data & magic.
*/
while (stakbsy != 0 && (sav == 0

(char *)stakbsy != sav - sizeof(struct blk) - MAGICSIZE))
tossgrowing(); /* toss the stack top */

grostalloc(); /* new growing stack */

}

stakchk() /* reduce growing-stack size if feasible */
{

if (stakend - staktop > 2*BRKINCR) /* lots of unused stack headroom */
(void) growstak(-(stakend - staktop - BRKINCR));

}

char * /* address of copy of newstak */
cpystak(newstak)
char *newstak;
{

return strcpy(getstak(strlen(newstak) + 1), newstak);
}

char * /* new address of grown stak */
growstak(incr) /* grow the growing stack by incr */
int incr;
{

register char *oldbsy;
unsigned topoff, botoff, basoff;
int staklen;

if (stakbsy == 0) /* paranoia */
grostalloc(); /* make a trivial stack */

/* paranoia: during realloc, point at previous item in case of signals */
oldbsy = (char *)stakbsy;
stakbsy = stakbsy->word;

topoff = staktop - oldbsy;
botoff = stakbot - oldbsy;
basoff = stakbas - oldbsy;

/* + 1 is because stakend points at the last byte of the growing stack */
staklen = stakend + 1 + incr - oldbsy;

if (staklen <= sizeof(struct blk) + MAGICSIZE) /* paranoia */
staklen = sizeof(struct blk) + MAGICSIZE;

if (incr < 0) {
/*
* V7 realloc wastes the memory given back when
* asked to shrink a block, so we malloc new space
* and copy into it in the hope of later reusing the old
* space, then free the old space.
*/
register char *new = malloc((unsigned)staklen);

if (new == NIL)
error(nostack);

(void) memcpy(new, oldbsy, staklen);
free(oldbsy);
oldbsy = new;

} else {
/* get realloc to grow the stack to match the stack top */
if ((oldbsy = realloc(oldbsy, (unsigned)staklen)) == NIL)

error(nostack);
}
stakend = oldbsy + staklen - 1; /* see? points at the last byte */
staktop = oldbsy + topoff;
stakbot = oldbsy + botoff;
stakbas = oldbsy + basoff;

/* restore stakbsy after realloc */
stakbsy = (struct blk *)Rcheat(oldbsy);
return stakbas; /* addr of 1st usable byte */

}

/* ARGSUSED reqd */
addblok(reqd) /* called from main at start only */
unsigned reqd;
{

if (stakbot == 0) /* called from main, 1st time */
grostalloc(); /* allocate initial arena */

/* else won’t happen */
}

/*
* Heap allocation.
*/
char *
alloc(size)
unsigned size;
{

register char *p = malloc(MAGICSIZE + size);

if (p == NIL)
error(nospace);

*(int *)Rcheat(p) = HPMAGICNUM;
p += BYTESPERWORD; /* fiddle ptr for the user */
return p;

}

/*
* the shell’s private "free" - frees only heap storage.
* only works on non-null pointers to heap storage
* (below the data break and stamped with HPMAGICNUM).
* so it is "okay" for the shell to attempt to free data on its
* (real) stack, including its command line arguments and environment,
* or its fake stak.
* this permits a quick’n’dirty style of programming to "work".
* the use of sbrk is relatively slow, but effective.
*/
shfree(p)
register char *p;
{

extern char *sbrk();

if (p != 0 && p < sbrk(0)) { /* plausible data seg ptr? */
register int *magicp = (int *)Rcheat(p) - 1;

/* ignore attempts to free non-heap storage */
if (*magicp == HPMAGICNUM) {

magicp = 0; / erase magic */
p -= BYTESPERWORD; /* get orig. ptr back */
free(p);

}
}

}

